# Introduction to differential gene expression analysis using RNA-seq

# Written by Friederike Dündar, Luce Skrabanek, Paul Zumbo

# September 2015 updated November 14, 2019

| 1 | Intr                                            | roduction to RNA-seq                                             | 5  |  |  |
|---|-------------------------------------------------|------------------------------------------------------------------|----|--|--|
|   | 1.1                                             | RNA extraction                                                   | 5  |  |  |
|   |                                                 | 1.1.1 Quality control of RNA preparation (RIN)                   | 6  |  |  |
|   | 1.2                                             | Library preparation methods                                      | 6  |  |  |
|   | 1.3                                             | Sequencing (Illumina)                                            | 10 |  |  |
|   | 1.4                                             | Experimental Design                                              | 11 |  |  |
|   |                                                 | 1.4.1 Capturing enough variability                               | 12 |  |  |
|   |                                                 | 1.4.2 Avoiding bias                                              | 13 |  |  |
| 2 | Rav                                             | w Data (Sequencing Reads)                                        | 15 |  |  |
|   | 2.1                                             | Download from ENA                                                | 15 |  |  |
|   | 2.2                                             | Storing sequencing reads: FASTQ format                           | 16 |  |  |
|   | 2.3                                             | Quality control of raw sequencing data                           | 20 |  |  |
| 3 | Mai                                             | pping reads with and without alignment                           | 23 |  |  |
| • | 3.1                                             | Reference genomes and annotation                                 | 26 |  |  |
|   |                                                 | 3.1.1 File formats for defining genomic regions                  | 26 |  |  |
|   | 3.2                                             | Aligning reads using STAR                                        | 30 |  |  |
|   | 3.3                                             | Storing aligned reads: SAM/BAM file format                       | 31 |  |  |
|   |                                                 | 3.3.1 The SAM file header section                                | 32 |  |  |
|   |                                                 | 3.3.2 The SAM file alignment section                             | 34 |  |  |
|   |                                                 | 3.3.3 Manipulating SAM/BAM files                                 | 37 |  |  |
|   | 3.4                                             | Quality control of aligned reads                                 | 39 |  |  |
|   |                                                 | 3.4.1 Basic alignment assessments                                | 39 |  |  |
|   |                                                 | 3.4.2 Bias identification                                        | 44 |  |  |
|   |                                                 | 3.4.3 Quality control with QoRTs                                 | 47 |  |  |
|   |                                                 | 3.4.4 Summarizing the results of different QC tools with MultiQC | 47 |  |  |
| 4 | Rea                                             | ad Quantification                                                | 49 |  |  |
|   | 4.1                                             | Gene-based read counting                                         | 49 |  |  |
|   | 4.2                                             | Isoform counting methods (transcript-level quantification)       | 50 |  |  |
| 5 | Nor                                             | rmalizing and Transforming Read Counts                           | 53 |  |  |
|   | 5.1                                             | Normalization for sequencing depth differences                   | 53 |  |  |
|   |                                                 | 5.1.1 DESeq2's specialized data set object                       | 54 |  |  |
|   | 5.2                                             | Transformation of sequencing-depth-normalized read counts        | 56 |  |  |
|   |                                                 | 5.2.1 Log <sub>2</sub> transformation of read counts             | 56 |  |  |
|   |                                                 | 5.2.2 Visually exploring normalized read counts                  | 57 |  |  |
|   |                                                 | 5.2.3 Transformation of read counts including variance shrinkage | 58 |  |  |
|   | 5.3                                             | Exploring global read count patterns                             | 59 |  |  |
|   |                                                 | 5.3.1 Pairwise correlation                                       | 59 |  |  |
|   |                                                 | 5.3.2 Hierarchical clustering                                    | 59 |  |  |
|   |                                                 | 5.3.3 Principal Components Analysis (PCA)                        | 61 |  |  |
| 6 | Differential Gene Expression Analysis (DGE)  63 |                                                                  |    |  |  |

|   | 6.1 | Estimating the difference between read counts for a given gene 6 |    |  |  |  |  |  |
|---|-----|------------------------------------------------------------------|----|--|--|--|--|--|
|   | 6.2 | 2 Testing the null hypothesis                                    |    |  |  |  |  |  |
|   | 6.3 | Running DGE analysis tools                                       | 65 |  |  |  |  |  |
|   |     | 6.3.1 DESeq2 workflow                                            | 65 |  |  |  |  |  |
|   |     | 6.3.2 Exploratory plots following DGE analysis                   | 66 |  |  |  |  |  |
|   |     | 6.3.3 Exercise suggestions                                       | 69 |  |  |  |  |  |
|   |     | 6.3.4 edgeR                                                      | 69 |  |  |  |  |  |
|   |     | 6.3.5 limma-voom                                                 |    |  |  |  |  |  |
|   | 6.4 |                                                                  |    |  |  |  |  |  |
|   | 6.5 | Example downstream analyses                                      |    |  |  |  |  |  |
| 7 | App | pendix                                                           | 78 |  |  |  |  |  |
|   | 7.1 | Improved alignment                                               | 78 |  |  |  |  |  |
|   | 7.2 | Additional tables                                                |    |  |  |  |  |  |
|   | 7.3 | Installing bioinformatics tools on a UNIX server                 | 89 |  |  |  |  |  |

# List of Tables

| 1        | Sequencing depth recommendations                                                             | . 12 |
|----------|----------------------------------------------------------------------------------------------|------|
| 2        | Examples for technical and biological replicates                                             | . 12 |
| 3        | Illumina's different base call quality score schemes                                         |      |
| 4        | The fields of the alignment section of SAM files                                             |      |
| 5        | The FLAG field of SAM files                                                                  |      |
| 6        | Comparison of classification and clustering techniques                                       |      |
| 7        | Programs for DGE                                                                             |      |
| 8        | Biases and artifacts of Illumina sequencing data                                             |      |
| 9        | FASTQC test modules                                                                          |      |
| 10       | Optional entries in the header section of SAM files.                                         |      |
|          |                                                                                              |      |
| 11       | Overview of RSeQC scripts                                                                    |      |
| 12       | Overview of QoRTs QC functions                                                               |      |
| 13       | Normalizing read counts between different conditions.                                        |      |
| 14       | Normalizing read counts within the same sample                                               | . 88 |
|          |                                                                                              |      |
|          | a                                                                                            |      |
| List     | of Figures                                                                                   |      |
|          |                                                                                              |      |
| 1        | RNA integrity assessment (RIN)                                                               |      |
| 2        | Overview of general RNA library preparation steps                                            | . 7  |
| 3        | Size selection steps during common RNA library preparations                                  | . 9  |
| 4        | The different steps of sequencing by synthesis                                               |      |
| 5        | Sequence data repositories.                                                                  |      |
| 6        | Schema of an Illumina flowcell                                                               |      |
| 7        | Phred score ranges                                                                           |      |
| 8        | Typical bioinformatics workflow of differential gene expression analysis                     |      |
| 9        | Scheme of raw read QC                                                                        |      |
| 10       | Classic sequence alignment example                                                           |      |
| 11       | RNA-seq read alignment.                                                                      |      |
| 12       | Alignment-free sequence comparison.                                                          |      |
| 13       | · · · · · · · · · · · · · · · · · · ·                                                        |      |
| 13<br>14 | Kallisto's strategy                                                                          |      |
|          |                                                                                              |      |
| 15<br>16 | CIGAR strings of aligned reads                                                               |      |
| 16       | Graphical summary of STAR's log files for 96 samples.                                        |      |
| 17       | Different modes of counting read-transcript overlaps                                         |      |
| 18       | Schema of RSEM-based transcrip quantification.                                               |      |
| 19       | Effects of different read count normalization methods                                        |      |
| 20       | Comparison of the read distribution plots for untransformed and $\log_2$ -transformed values |      |
| 21       | Comparison of $log_2$ - and $rlog$ -transformed read counts                                  |      |
| 22       | Dendrogram of $\mathit{rlog}$ -transformed read counts                                       | . 61 |
| 23       | PCA on raw counts and $\textit{rlog}$ -transformed read counts                               |      |
| 24       | Regression models and DGE                                                                    |      |
| 25       | Histogram and MA plot after DGE analysis                                                     |      |
| 26       | Heatmaps of log-transformed read counts                                                      | . 67 |
| 27       | Read counts for two genes in two conditions                                                  |      |
| 28       | Schematic overview of different DE analysis approaches                                       |      |
| 29       | Example plots to judge DGE analysis results                                                  |      |
| 30       | Example results for OBA and CSEA                                                             | 77   |

## **Technical Prerequisites**

Command-line interface The first steps of the analyses – that are the most computationally demanding – will be performed directly on our servers. The interaction with our servers is completely text-based, i.e., there will be no graphical user interface. We will instead be communicating entirely via the command line using the UNIX shell scripting language bash. You can find a good introduction into the shell basics at http://linuxcommand.org/lc3\_learning\_the\_shell.php (for our course, chapters 2, 3, 5, 7, and 8 are probably most relevant).

To start using the command line, Mac users should use the App called Terminal. Windows users need to install putty, a Terminal emulator (http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html). You probably want the bits under the A Windows installer for everything except PuTTYtel heading. Putty will allow you to establish a connection with a UNIX server and interact with it.

Programs that we will be using via the command line:

```
FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/featureCounts http://bioinf.wehi.edu.au/subread-package/)
MultiQC http://multiqc.info/docs/
QoRTs https://hartleys.github.io/QoRTs/
RSeQC http://rseqc.sourceforge.net/
samtools http://www.htslib.org/
STAR https://github.com/alexdobin/STAR
```

Details on how to install these programs via the command line can be found in the Appendix.

https://hgdownload.soe.ucsc.edu/admin/exe/

The only program with a graphical user interface will be IGV. Go to https://www.broadinstitute.org/igv/ \rightarrow "Downloads", register with your academic email address and launch the Java web start (for Windows machines, you should go for the 1.2 GB version).

R The second part of the analyses – where we will need support for statistics and visualization more than pure computation power – will mostly be done on the individual computers using the programming language R. You can download R for both MacOS and Windows from http://cran.rstudio.com/. After you have installed R, we highly recommend to install RStudio (http://www.rstudio.com/products/rstudio/download/), which will provide you with an interface to write commands at a prompt, construct a script and view plots all in a single integrated environment.

R packages that will be used throughout the course:

```
from CRAN: ggplot2, magrittr, pheatmap, UpSetR from bioconductor: DESeq2, edgeR, ggplot2, limma, pcaExplorer, org.Sc.sgd.db, vsn
```

UCSC tools

### 1 Introduction to RNA-seq

The original goal of RNA sequencing was to identify which genomic loci are expressed in a cell (population) at a given time over the entire expression range and without the absolute need to pre-define the sequences of interest as it is the case with cDNA microarrays. Indeed, RNA-seq was shown to detect lowly expressed transcripts while suffering from strongly reduced false positive rates in comparison to microarray based expression quantification (Illumina, 2011; Nookaew et al., 2012; Zhao et al., 2014)\*. In addition, RNAseq can, in principle, be used not only for the quantification of expression differences between distinct conditions, it also offers the possibility to detect and quantify non-protein-coding transcripts, slice isoforms, novel transcripts and sites of protein-RNA interactions. However, the lack of a pre-specified selection of cDNA probes for RNA-seq puts the burden of identifying which transcripts we actually found on the postprocessing workflow, and the main goal (e.g., novel transcript discovery versus differential gene expression analysis) should be clear before the design of the experiment as the devil's in the detail. The detection of gene expression changes (i.e., mRNA levels) between different cell populations and/or experimental conditions remains the most common application of RNA-seq; yet even for that highly popular application, widely accepted and adopted standards are lacking and the RNA-seq field is only slowly coming to terms about best practices for differential gene expression analysis amid a myriad of available software (Byron et al., 2016).

The general workflow of a differential gene expression analysis is:

#### 1. Sequencing (biochemistry)

- (a) RNA extraction
- (b) Library preparation (including mRNA enrichment)
- (c) Sequencing

#### 2. Bioinformatics

- (a) Processing of sequencing reads (including alignment)
- (b) Estimation of individual gene expression levels
- (c) Normalization
- (d) Identification of differentially expressed (DE) genes

#### 1.1 RNA extraction

Before RNA can be sequenced, it must first be extracted and separated from its cellular environment, which consists primarily of proteins and DNA. The most prevalent methods for RNA isolation are silicagel based membranes or liquid-liquid extractions with acidic phenol-chloroform. In the former case, RNA exclusively binds to a silica-gel membrane, while the remaining cellular components are washed away. Silicagel membranes require ethanol for binding. The volume of ethanol influences which transcripts are bound to the membrane: more ethanol results in the retention of RNAs <200 bp, whereas a smaller volume results in their loss. When using phenol-chloroform extraction, the cellular components are dissolved into three phases: the organic phase; the interphase; and the aqueous phase, in which the RNA is retained. Phenol-chloroform extraction is typically followed by an alcohol precipitation to de-salt and concentrate the RNA. An alcohol precipitation can be performed with either ethanol or isopropanol, both of which require the use of a salt. Different salts lead to different precipitation efficiencies and result in different RNA populations; e.g., lithium chloride, a commonly used salt, has been reported to result in the loss of tRNAs, 5S rRNAs, snRNAs, and other RNAs <250-300 bp (Cathala et al., 1983). Given the multitude of factors that can influence the outcome of RNA extraction, it is therefore important to process the RNA in a highly controlled and standardized manner, so that the knowledge of how the RNA was isolated can be appropriately leveraged for one's understanding of the data later on. Additional information on how RNA extraction methods influence RNA-seq data can be found in Sultan et al. (2014).

Although both extraction methods previously mentioned are designed to eliminate DNA contamination, they are often imperfect. But even small amounts of DNA contamination (as little as 0.01% genomic DNA

<sup>\*</sup>For a detailed comparison of different methods for transcriptome quantification, see Lowe et al. (2017)

by weight) can negatively impact results (NuGEN, 2013). Accordingly, it is advisable to take additional measures to ensure DNA-free RNA, e.g., by treating the RNA with DNase.

#### 1.1.1 Quality control of RNA preparation (RIN)

RNA is much more susceptible to degradation than DNA and the quality of the extracted RNA molecules can strongly impact the results of the RNA-seq experiment. Traditionally, RNA integrity was assessed via gel electrophoresis by visual inspection of the ribosomal RNA bands. Intact eukaryotic total RNA should yield clear 28S and 18S rRNA bands. The 28S rRNA band is approximately twice as intense as the 18S rRNA band (2:1 ratio). As RNA degrades, the 2:1 ratio of high quality RNA decreases, and low molecular weight RNA begins to accumulate (Figure 1a). Since the human interpretation of gel images is subjective and has been shown to be inconsistent, Agilent developed a software algorithm that allows for the calculation of an RNA Integrity Number (RIN) from a digital representation of the size distribution of RNA molecules (which can be obtained from an Agilent Bioanalzyer). The RIN number is based on a numbering system from 1 to 10, with 1 being the most degraded and 10 being the most intact (Figure 1b). This approach facilitates the interpretation and reproducibility, of RNA quality assessments, and provides a means by which samples can be compared in a standardized manner.

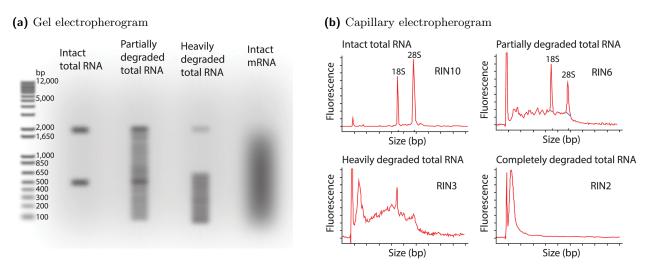


Figure 1: RNA integrity assessment is based on the ratio of  $\frac{28S}{18S}$  rRNA, estimated from the band intensity (a) or a densitometry plot (b). RNA used for RNA-seq experiments should be as intact as possible. Figure taken from Griffith et al. (2015).

#### 1.2 Library preparation methods

In high-throughput sequencing terms, a *library* is a (preferably random) collection of DNA *fragments* that are ready for sequencing with a specific protocol (Figure 2). We are focusing on the most popular HTS platform, provided by Illumina †. Their short read sequencing is based on the principle "Sequencing by Synthesis", which originated with the Sanger sequencing protocols starting in the 1970s and was further adopted for massively parallelized applications by Solexa. These methods rely on (originally) biologically occurring enzymes that "read" DNA all the time, e.g. DNA polymerases. These molecules have the capacity to identify the precise order in which specific nucleotides are needed to create a perfect complementary copy of a given single strand of DNA. Illumina's method relies on exactly that property of DNA polymerase and simply ensures that there's a base-specific record every time DNA polymerase is adding a new nucleotide to an evolving DNA copy. The record of choice for Illumina platforms is a fluorescent signal, i.e. each nucleotide is labelled with a specific fluorophore so that the incorporation of A, C, T, G will yield distinct emission

 $<sup>^{\</sup>dagger}$ For a comprehensive overview of recent high-throughput sequencing methods beyond Illumina protocols, see Goodwin et al. (2016).

signals. These signals are recorded via automated cameras using sophisticated microscopes. This means that in order for cDNA fragments to be sequenced on an Illumina sequencer, they:

- have to be single-stranded,
- cannot exceed a certain size,
- have to be immobilized on a glass slide, and
- the inherent sequence properties of a given fragment (length, GC content, homopolymers) will influence the fidelity of the DNA polymerase and thus the ultimate signal (Section 5).

Therefore, library preparation for Illumina protocols aims to generate cDNA fragments between 150 to 300 bp, which will be hybridized to a glass slide with microfluidic chambers (*flowcell*). Of those fragments, only the ends (50 to 150 bp) will actually be sequenced.

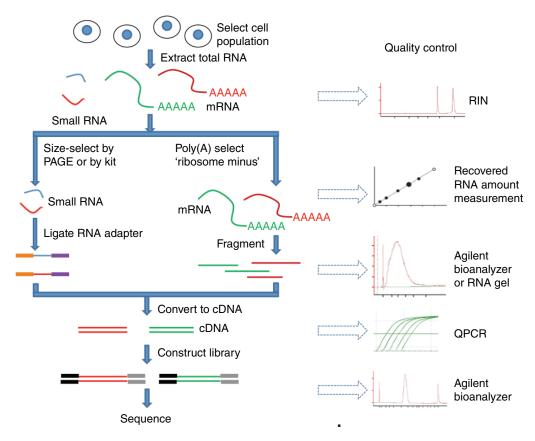


Figure 2: General RNA library preparation workflow. After RNA extraction and measuring its integrity, rRNA is depleted (either using poly(A)-selection or rRNA depletion) and the remaining RNA molecules are fragmented, ideally achieving a uniform size distribution. Double-stranded cDNA is synthesized and the adapters for sequencing are added to construct the final library whose fragment size distribution should be unimodal and well-defined. Image taken from Zeng and Mortazavi (2012).

Due to the numerous types of RNA families, there is a great variety of library preparation protocols. Since the quantification of mRNA is by far the most commonly used application of RNA-seq experiments, we will focus on protocols that are typically applied in this context. Keep in mind that the library preparation can seriously affect the outcome of the sequencing in terms of quality as well as coverage. More importantly, small transcripts (smaller than about 150 bp) and strand information will be lost during standard RNA-seq library preparations (Figure 3), i.e., if those details are of interest to you, make sure to select an alternative protocol. For more details on library preparation protocols including single-cell RNA-seq, CLiP-seq and more, see Head et al. (2014), Shanker et al. (2015), Yeri et al. (2018), Boone et al. (2018).

mRNA enrichment The total RNA pool extracted from typical cells contains about 80–85% rRNA and 10–15% tRNA (Farrell, 2010). This is problematic if one is mostly interested in protein-coding mRNA. To increase the quantification of mRNA, there are two basic options: (i) *enrichment* of poly-(A)-containing

mRNAs with the help of oligo-(dT) beads, or (ii) removal of ribosomal RNA via complementary sequences. The two strategies will yield different populations of RNA, therefore they should never be mixed within the same experiment! For example, various non-polyadenylated mRNAs such as histone transcripts and immature mRNAs will not be captured with the poly(A)-enrichment protocol, while the alternative "ribominus" approach does not exclude unspliced RNAs. Do ask the sequencing facility you are going to collaborate with about the type of protocol they are using as this will inform you about the types of RNA noise that you will encounter. For more details about the different enrichment strategies and their impact, see Table S4 of Griffith et al.  $(2015)^{\ddagger}$ .

strand-specific sequencing If you need to distinguish overlapping transcripts, e.g., when sequencing prokaryotic transcriptomes or because the aims of the RNA-seq experiment include the identification of anti-sense transcripts, the information about which strand a fragment originated from needs to be preserved during library preparation. The most commonly used method incorporates deoxy-UTP during the synthesis of the second cDNA strand (for details see Levin et al. (2010)).



The goal of your RNA-seq experiment will determine the most appropriate library preparation protocol. Make sure to check the most important parameters including the expected size distribution of your transcripts.

 $<sup>^{\</sup>ddagger} http://journals.plos.org/ploscompbiol/article/file?type=supplementary\&id=info:doi/10.1371/journal.pcbi.1004393.s006$ 

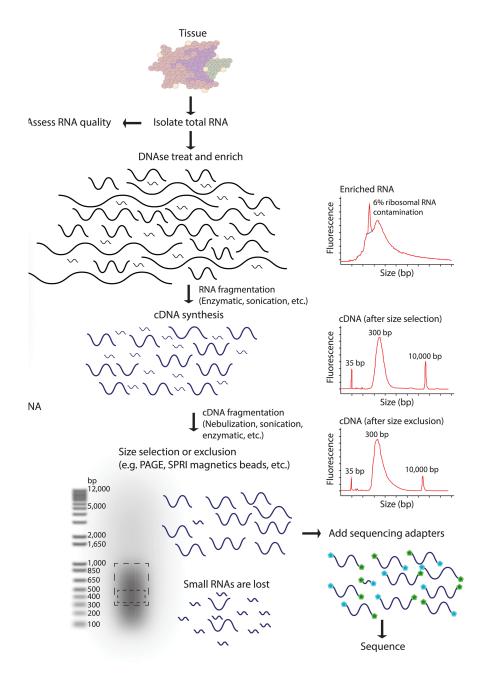
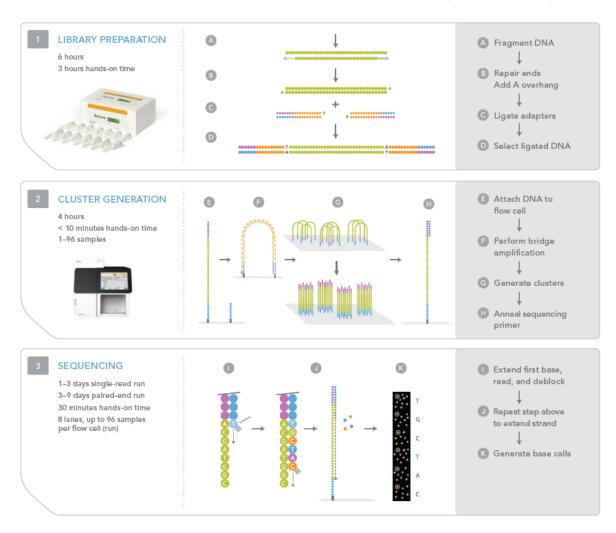


Figure 3: Size selection steps during common RNA library preparations. Typically, RNA is fragmented before or after cDNA synthesis, either via chemical (e.g. metal ion exposure), enzymatic (e.g., RNAses) or physical processes (e.g., shearing). Prior to sequencing, cDNA fragments are enriched for the size range that Illumina sequencing machines can handle best, i.e., between 150 to 1,000 bp (dashed boxes in the gel electropherogram). This means that for the vast majority of RNA-seq experiments, RNAs smaller than about 150 bp will be strongly under-represented. If you are interested in smaller RNA species, make sure that a protocol for small RNA library preparation is used. Figure taken from Griffith et al. (2015).

#### 1.3 Sequencing (Illumina)

After hybridization of the DNA fragments to the flowcell through means of adapters, each fragment is massively and clonally amplified, forming clusters of double-stranded DNA. This step is necessary to ensure that the sequencing signal will be strong enough to be detected unambiguously for each base of each fragment. The most commonly used Illumina sequencing protocols will only cover 50 to 100 bp of each fragment (depending on the read length that was chosen). The sequencing of the fragment ends is based on fluorophore-labelled dNTPs with reversible terminator elements that will become incorporated and excited by a laser one at a time and thereby enable the optical identification of single bases (Figure 4, Table 4).



**Figure 4:** The different steps of sequencing with Illumina's sequencing by synthesis method. Library preparation: Adapters are ligated to each cDNA fragment to eventually attach them to the flowcell on which they are going to be sequenced. To increase the signal of the sequencing step, every fragment is first clonally amplified after the hybridization onto the flowcell (cluster generation). Finally, the nucleotide order of each fragment is revealed through PCR with fluorophore-labelled nucleotides: Images are taken after each round of nucleotide incorporation and bases are identified based on the recorded excitation spectra. Figure from Illumina.

**Sequencing depth and coverage** Technically, *coverage* refers to the number of reads being sequenced in relation to the genome size, i.e., it is an estimate of how many times each base of the genome is sequenced. For experiments based on the sequencing of the genome, the Lander-Waterman equation is commonly cited as it describes the relationship between coverage, the number of sequenced reads and the genome size:

$$coverage = \frac{read \, length * number \, of \, reads}{haploid \, genome \, length}$$

To identify sequencing errors (and possibly distinguish them from genomic variants), every base should be covered more than once. The coverage value will always be an estimate as the genome is usually not covered uniformly since, for example, euchromatic fragments tend to be overrepresented and standard PCR protocols will favor GC-rich regions and impede AT-rich regions (see Table 8 for more examples of biases that occur with Illumina sequencing platforms).

For RNA-seq, the coverage estimation has rather little practical value as the size of the transcriptome is not known as accurately as the size of the genome, and, more importantly, the per-base coverage will vary drastically between different transcripts depending, most importantly, on their expression. Thus, the number of required reads is determined by the least abundant RNA species of interest. However, it is impossible to know before sequencing how many reads are going to be needed to capture enough fragments of the most lowly expressed genes. In order to estimate the sequencing depth (= read numbers) needed for a specific RNA-seq experiment, consider the following parameters:

- guidelines from the literature/references (e.g., ENCODE (2011), Sims et al. (2014))
- type of experiment and the type of biological question
- transcriptome size and complexity (many repetitive regions present?)
- error rate of the sequencing platform

See Table 1 for recommended numbers of reads for typical RNA-seq applications. Be aware that, depending on your application, you may want to sequence deeper – consider increasing the number of reads if your goal is to:

- identify lowly expressed genes
- identify very small fold changes between different conditions
- quantify alternative splicing/different isoforms
- detect chimeric transcripts
- detect novel transcripts, transcription start and end sites
- perform de novo transcript assembly

Keep in mind that strongly expressed genes and residual rRNA will always account for a large fraction of all reads.

If you are interested in performing power analyses for differential gene expression detection using RNA-seq data, you can have a look at the publication and R code provided by Ching et al. (2014).



In most cases of differential gene expression analysis, it is more important to increase the number of biological replicates than the sequencing depth of single samples (Rapaport et al., 2013; Ching et al., 2014; Liu et al., 2014; Gierliński et al., 2015).

**Single read vs. paired-end** Single read (SR) sequencing determines the DNA sequence of just one end of each DNA fragment.

Paired-end (PE) sequencing yields both ends of each DNA fragment. PE runs are more expensive (you are generating twice as many DNA reads as with SR), but they increase the mappability for repetitive regions and allow for easier identification of structural variations and indels. They may also increase the precision of studies investigating splicing variants or chimeric transcripts.

#### 1.4 Experimental Design

Most RNA-seq experiments aim to identify genes whose expression varies between two or more experimental settings. This means, that during our downstream analyses, we will test every single gene whether its expression seems to change when comparing two (or more) conditions. It seems immediately obvious that

**Table 1:** Recommended sequencing depths for typical RNA-seq experiments for different genome sizes (Genohub, 2015). DGE = differential gene expression, SR = single read, PE = paired-end.

|                                                             | Small (bacteria) | Intermediate<br>(fruit fly, worm | Large (mouse, human) |
|-------------------------------------------------------------|------------------|----------------------------------|----------------------|
| No. of reads for DGE $(x10^6)$                              | 5 SR             | 10 SR                            | 20–50 SR             |
| No. of reads for $de$ novo transcriptome assembly $(x10^6)$ | 30–65 PE         | 70–130 PE                        | 100–200 PE           |
| Read length (bp)                                            | 50               | 50-100                           | >100                 |

comparing just one measurement per condition is not going to yield a very robust answer since gene expression may vary because of many factors (e.g., temperature, sex, time of the day), not just because of the condition of interest (e.g., genotype or drug treatment). To distinguish transcription changes caused by the condition being studied from transcription variation caused by differences between individual organisms, cell populations, or experimenters, it is important to perform RNA-seq experiments with sufficient numbers of different types of replicates (Table 2) and with a well thought-out experimental design.

Our goal is to observe a reproducible effect that can be due only to the treatment (avoiding confounding and bias) while simultaneously measuring the variability required to estimate how much we expect the effect to differ if the measurements are repeated with similar but not identical samples (replicates). (Altman and Krzywinski, 2014)

#### 1.4.1 Capturing enough variability

Without a somewhat realistic estimate of the variance in your system of interest, the statistical tests will have a very hard time to make accurate inferences about the gene expression differences. The problem may not (only) be a lack of results, but if you failed to capture a truly random subset of the population of interest in your experiment, the results you eventually obtain may only be representative of these four mice you happened to sacrifice on that specific Monday in that one lab you worked in at the time.

Ideally, there should be enough replicates to capture the breadth of the variability and to identify and isolate sources of noise. In practical terms, this usually translates to a number of replicates that allows to a) identify outlier samples and b) be able to remove them without losing too much information about the background variation between transcripts of the same sample type. The latter step should only be taken if there are valid reasons to believe that a certain sample might indeed be an outlier due to technical reasons (e.g., sequencing problems) or biological reasons that do not play a role for the question at hand.

**Table 2:** Replicate categories and types in a hypothetical mouse single-cell gene expression RNA sequencing experiment. Taken from Blainey et al. (2014).

|                    | Replicate type                                            | Category   |
|--------------------|-----------------------------------------------------------|------------|
|                    | Colonies                                                  | Biological |
|                    | Strains                                                   | Biological |
| Subjects           | Cohoused groups                                           | Biological |
|                    | Gender                                                    | Biological |
|                    | Individuals                                               | Biological |
|                    | Organs from sacrificed animals                            | Biological |
|                    | Methods for dissociating cells from tissue                | Technical  |
| Sample preparation | Dissociation runs from given tissue sample                | Technical  |
|                    | Individual cells                                          | Biological |
|                    | RNA-seq library construction                              | Technical  |
|                    | Runs from the library of a given cell                     | Technical  |
| Sequencing         | Reads from different transcript molecules                 | Variable   |
|                    | Reads with unique molecular identifier from a given tran- | Technical  |
|                    | script molecule                                           |            |

Technical replicates Every experiment will have some random noise associated with protocols or equipment. Generally speaking, technical replicates are therefore repeated measurements of the same sample (Blainey et al., 2014). For RNA-seq specifically, the ENCODE consortium has defined technical replicates as different library preparations from the same RNA sample. They should account for batch effects from the library preparation such as reverse transcription and PCR amplification. To avoid possible lane effects (e.g., differences in the sample loading, cluster amplification, and efficiency of the sequencing reaction), it is good practice to multiplex the same sample over different lanes of the same flowcell. In most cases, technical variability introduced by the sequencing protocol is quite low and well controlled, so that technical replicates accounting for library preparation alone are rarely done – as long as you use the same protocol and the same sequencing center for all your samples.

Biological replicates There is an on-going debate over what kinds of samples represent true biological replicates, but a generally accepted definition is that biological replicates should be "parallel measurements of biologically distinct samples that capture random biological variation" (Blainey et al., 2014). Biological replicates will allow you to have a better handle on the true mean and variance of expression (of all genes in question) for the biological population of interest. The ENCODE consortium specifies that biological replicates should represent RNA from an independent growth of cells/tissue (ENCODE (2011)). Nevertheless, for complex experimental designs, this may mean that the distinction between biological and technical replicates depends on which sources of variation are of interest and which ones are being viewed as noise sources.

Numbers of replicates Currently, most published RNA-seq experiments contain three biological replicates. Based on one of the most exhaustive RNA-seq experiment reported to-date (48 replicates per condition), Schurch et al. (2016) recommend the use of at least six replicates per condition if the focus is on a reliable description of one condition's transcriptome or strongly changing genes between two conditions. If the goal of the experiment is to identify as many differentially expressed genes as possible (including slightly changing ones and those that are lowly expressed), as many as twelve replicates are recommended.

Always keep in mind that you are ultimately trying to draw conclusions about entire populations of cells or even organisms just by looking at very selective subsets of these. The degree of generalizability of your findings to, say, all mice of a specific strain, will strongly depend on how well you were able to capture good representatives in your experiment.



As a general rule, the more genes with low fold changes that are to be detected, the more replicates are needed to increase the precision of the estimation of the biological variability.

Artificial RNA spike-in If it is important to you to accurately quantify absolute transcript concentrations, you may want to consider to use spike-ins of artificial RNA (such as the ERCC spike-in standard which consists of This set consists of 92 polyadenylated transcripts of varying lengths (2502,000 nucleotides) and GC-contents (551%) (Jiang et al., 2011)). These RNA of known quantities can be used for the calibration of the RNA concentrations in each sample and to assess the sensitivity, coverage and linearity of your experiment, i.e., the overall technical performance of your experiment. The ERCC has released its own R package for analyzing spike-ins: erccdashboard, which is available at Bioconductor (Munro et al., 2014). Note that different spike-in controls are needed for each type of RNA, but standards are not yet available for all RNA types (ENCODE, 2011).

Spike-ins should not be be used for normalizing between different samples since they cannot account for differences in the amount of starting material, which will almost always be the case (unless you are sure you extracted RNA from the same number of cells with the same efficiency for all samples). In addition, Risso et al. (2014) (and others) demonstrated that the application of the spike-ins is not as reliable as one would hope for.

#### 1.4.2 Avoiding bias

The main goal of a well planned experiment is to improve the precision of the answers you will eventually get. This means that you should:

- 1. Identify the question of interest (What is the effect you are truly after?);
- 2. Attempt to identify possible sources of variability (nuisance factors);
- 3. Plan the experiment in a way that reduces the effect of the expected nuisance factors;
- 4. Protect yourself against unknown sources of variation.

If you feel overwhelmed with the lists of nuisance factors, go back to the first step and try to prioritize. It may also make sense to start with a pilot experiment first.

The next paragraphs will give you a brief summary of typical means to come up with a suitable experimental design.

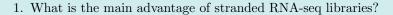
Randomization In addition to sufficient numbers of replicates, true randomization when selecting replicates and performing sample preparations can help to avoid unconscious selection bias that might be caused by subtle differences in the activity of the animals, their appearance, the growth pattern of cell lines etc. True randomization means: make the decision about any of the factors of interest by tossing a coin (Honaas et al., 2016)! This is fairly straight-forward when the factors are easily controllable, such as deciding which batches of cells to treat with a drug and which ones to keep as a control.

Blocking Randomization is meant to protect you against falling prey to spurious signals due to unintended batch effects. Usually, you will know about some factors that are very likely to be responsible for gene expression variation, such as sex, weight, or the cell cycle status of your cells of interest. If it is feasible to group your samples into distinct classes (or "blocks") for these known sources of variation, a blocking experimental design may make sense and will help increase statistical sensitivity. For a blocking design, you will create complete sub-experiments for each class, i.e. all conditions of interest must be present in every block. By creating these blocks in which the nuisance factor is kept constant, you will be able to detect the changes that are due to the factor of interest without having to worry about the nuisance factor. If the blocking factor accounts for a sufficient amount of sample-to-sample variation, this will increase the sensitivity of the statistical tests to detect changes of interest – there is no guarantee though! Also, keep in mind though that within each block the assignment of treatments etc. should still be randomized.



Block what you can, randomize what you cannot.

For more general insights into good experimental design, we highly recommend Nature Methods' "Points of Significance" series by Naomi Altman and Martin Krzywinski.





- 2. What are advantages of paired-end sequencing for RNA-seq experiments?
- 3. How do you identify possible nuisance factors when planning an experiment?

## 2 Raw Data (Sequencing Reads)

Most journals require that any sequencing data related to a manuscript is deposited in a publicly accessible data base. The Sequence Read Archive (SRA) is the main repository for nucleic acid sequences (Leinonen et al., 2011) currently storing more than 25,000 tera(!)bases. There are three copies of the SRA which are maintained by the NCBI, the European Bioinformatics Institute, and the DNA Databank of Japan (Figure 5), respectively. The different mirrors of the SRA offer different ways to browse and download the data. NCBI/GenBank, for example, typically allows download of the SRA's compressed file format only, which means that you will have to instantly re-format those files into the more commonly used FASTQ files (Section 2.2). ENA, on the other hand, offers a text file that contains the direct links to different types of raw data formats, which can then be downloaded with standard command line tools via FTP or Aspera. To learn more about the SRA and its data storage and retrieval strategies, please read the account by O'Sullivan et al. (2018). A step-by-step tutorial for downloading data with either ENA or NCBI can be found here: https://www.biostars.org/p/325010/. Tools that may make the searching for specific sequencing data more amenable include SRA Explorer (https://www.biostars.org/p/366721/) and MetaSRA (http://metasra.biostat.wisc.edu/) (Bernstein et al., 2017).

# International Nucleotide Sequence Database Collaboration

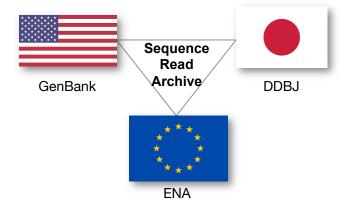


Figure 5: The Sequence Read Archive (SRA) is the largest data base of nucleic acid sequences and all three members of the International Nucleotide Sequencing Database Collaboration (GenBank, the European Nucleotide Archive, the DNA Databank of Japan) maintain instances of it. The different mirrors offer different routes for browsing and downloading the actual data.

#### 2.1 Download from ENA

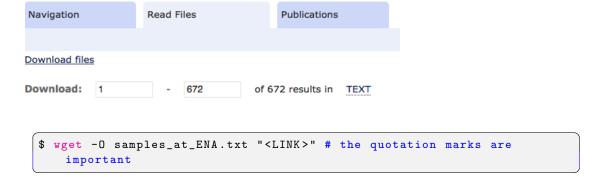
Here, we show you how to download raw sequence data from the European instance of the SRA, which can be accessed via https://www.ebi.ac.uk/ena. At ENA, the sequencing reads are directly available in FASTQ format, which will be explained below.

To download a set of FASTQ files:

- 1. Go to https://www.ebi.ac.uk/ena.
- 2. Search for the accession number of the project, e.g., ERP004763 (should be indicated in the published paper).
- 3. There are several ways to start the download:
  - (a) Click on the link within the column "Fastq files (ftp)" and save the file of interest. Done.
  - (b) If you prefer the command line, copy the link's address of the "Fastq files" column (right mouse click), go to the command line, move to the target directory, type:

```
$ wget <link copied from the ENA website>
```

(c) If there are many samples within one project, you can download the summary of the sample information from ENA by right-clicking on "TEXT" and copying the link location.



Once you have done this, go to the folder where you will store the data and use the 11th column of the TEXT file ("Fastq files (ftp)") to feed the individual FTP URLs of the different samples to the wget command:

```
$ cut -f11 samples_at_ENA.txt | xargs wget # this would download ALL 672 samples
```

As mentioned above, all sequencing data submitted to the SRA (i.e., with an SRA accession number) can also be retrieved through NCBI (https://www.ncbi.nlm.nih.gov/sra).

**Example data** Throughout the course, we will be working with sequencing reads from the most comprehensive RNA-seq dataset to date that contains mRNA from 48 replicates of two S. cerevisiae populations: wildtype and snf2 knock-out mutants (Gierliński et al., 2015; Schurch et al., 2016). All 96 samples were sequenced on one flowcell (Illumina HiSeq 2000); each sample was distributed over seven lanes, which means that there are seven technical replicates per sample. The accession number for the entire data set (consisting of  $7 \times 2 \times 48$  (= 672) raw read files) is ERP004763.



Use the information from the file ERP004763\_sample\_mapping.tsv (from https://ndownloader.figshare.com/files/2194841) to download all FASTQ files related to the biological replicates no. 1 of sample type "SNF2" as well as of sample type "WT". Try to do it via the command line and make sure to create two folders (e.g., SNF2\_rep1 and WT\_rep1) of which each should contain seven FASTQ files in the end.

A simple for-loop could look like this:

```
$ for ACC_NR in ERR458493 ERR458494 ERR458495 ERR458496 ERR458497 ERR458498
do
    egrep ${ACC_NR} ERP004763_sample_mapping.tsv | cut -f11 | xargs wget
done
```



Can you come up with a more generic one, e.g. without manually typing out the actual accession numbers of interest? Can you spot the vulnerabilities of the code shown above?

#### 2.2 Storing sequencing reads: FASTQ format

Currently, raw reads are most commonly stored as FASTQ files. However, details of the file formats may vary widely depending on the sequencing platform, the lab that released the data, or the data repository. For a more comprehensive overview of possible file formats of raw sequencing data, see the NCBI's file format guide: https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/.

The FASTQ file format was derived from the simple text format for nucleic acid or protein sequences, FASTA. FASTQ bundles the sequence of every single read produced during a sequencing run together with the quality scores. FASTQ files are uncompressed and quite large because they contain the following information for every single sequencing read:

- 1. @ followed by the read ID and possibly information about the sequencing run
- 2. sequenced bases
- 3. + (perhaps followed by the read ID again, or some other description)
- 4. quality scores for each base of the sequence (ASCII-encoded, see below)

Again: be aware that this is not a strictly defined file format – variations do exist and may cause havoc!

Here's a real-life example snippet of a FASTQ file downloaded from ENA:

```
$ zcat ERR459145.fastq.gz | head
@ERR459145.1 DHKW5DQ1:219:DOPT7ACXX:2:1101:1590:2149/1
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAAGAGCGGTTCAGC
++
@7<DBADDDBH?DHHI@DH>HHHEGHIIIGGIFFGIBFAAGAFHA '5?B@D
@ERR459145.2 DHKW5DQ1:219:DOPT7ACXX:2:1101:2652:2237/1
GCAGCATCGGCCTTTTGCTTCTCTTTGAAGGCAATGTCTTCAGGATCTAAG
++
@@;BDDEFGHHHHIIIGBHHEHCCHGCGIGGHIGHGIGIIGHIIAHIIIGI
@ERR459145.3 DHKW5DQ1:219:DOPT7ACXX:2:1101:3245:2163/1
TGCATCTGCATGATCTCAACCATGTCTAAATCCAAATTGTCAGCCTGCGCG
```

For **paired-end** (PE) sequencing runs, there will always be **two** FASTQ files – one for the forward reads, one for the backward reads.

Once you have downloaded the files for a PE run, make sure you understand how the origin of each read (forward or reverse read) is encoded in the read name information as some downstream analysis tools may require you to combine the two files into one.

How can you...



- 1. ... count the number of reads stored in a FASTQ file?
- 2. ... extract just the quality scores of the first 10 reads of a FASTQ file?
- 3. ... concatenate the two FASTQ files of a PE run?

**Sequence identifier** The first line of each FASTQ read snippet contains the read ID. Earlier Illumina sequencing platforms (< version 1.8) generated read IDs with the following format:

```
@<machine_id>:<lane>:<tile>:<x_coord>:<y_coord>#<index>/<read_#>
```

Starting from version 1.8 the sequence identifier line has the following format:

```
@<machine_id>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>:<y-pos>
  <read>:<is filtered>:<control number>:<index sequence>
```

As you can see, every single read can thus be pin-pointed to the precise physical location on the flowcell where its template DNA was attached. The location is defined by the x- and y-coordinates within a given tile of a specific lane within a single flowcell (Figure 6). However, it should be pointed out that once data has been deposited in the SRA, the read ID might have been significantly altered to contain different types of meta data!

Base call quality scores Illumina sequencing is based on identifying the individual nucleotides by the fluorescence signal emitted upon their incorporation into the growing sequencing read (Figure 4). Once the sequencing run is complete, images taken during each DNA synthesis step are analyzed and the read clusters' fluorescence intensities are extracted and translated into the four letter code. The deduction of nucleotide sequences from the images acquired during sequencing is commonly referred to as base calling.

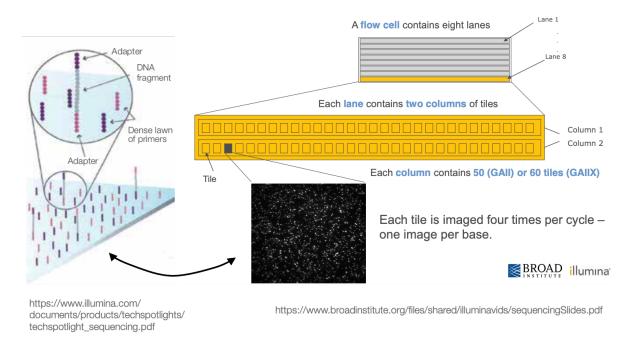


Figure 6: Illumina flowcell details. While some details have been changed over the years, flowcells are basically microscopy glass slides covered with primers.

Due to the imperfect nature of the sequencing process and limitations of the optical instruments (see Table 8), base calling will always have inherent uncertainty. This is the reason why FASTQ files store the DNA sequence of each read together with a position-specific quality score that represents the error probability, i.e., how likely it is that an individual base call may be incorrect. The score is called Phred score, Q, which is proportional to the probability p that a base call is incorrect, where  $Q = -10 * log_{10}(p)$ . For example, a Phred score of 10 corresponds to one error in every ten base calls ( $Q = -10 * log_{10}(0.1)$ ), or 90% accuracy; a Phred score of 20 corresponds to one error in every 100 base calls, or 99% accuracy. A higher Phred score thus reflects higher confidence in the reported base.

To assign each base a unique score identifier (instead of numbers of varying character length), Phred scores are typically represented as ASCII characters. At http://ascii-code.com/ you can see which characters are assigned to what number.

For raw reads, the range of scores will depend on the sequencing technology and the base caller used (Illumina, for example, used a tool called Bustard, or, more recently, RTA). Unfortunately, Illumina has been anything but consistent in how they a) calculated and b) ASCII-encoded the Phred score (see Table 3 and Figure 7 for the different conventions)! In addition, Illumina now allows Phred scores for base calls with as high as 45, while 41 used to be the maximum score until the HiSeq X sequencer. This may cause issues with downstream applications that expect an upper limit of 41.



Note that different base quality assignments exist (Table 3). Try to always make sure you know which version of the Phred score you are dealing with.

To convert an Illumina FASTQ file version 1.3 (Phred+64) to version 1.8 (Phred+33), you could, for example, use the following sed command:

```
$ sed -e '4~4y/@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghi/!"#$%&'\''()
*+,-.\/0123456789:;<=>?@ABCDEFGHIJ/' originalFile.fastq
```

**Table 3:** Base call quality scores are represented with the Phred range. Different Illumina (formerly Solexa) versions used different scores and ASCII offsets. Starting with Illumina format 1.8, the score now represents the standard Sanger/Phred format that is also used by other sequencing platforms and the sequencing archives. Also see Figure 7.

| Description                   | ASCII characters             |        | Quality score |          |
|-------------------------------|------------------------------|--------|---------------|----------|
|                               | Range                        | Offset | Type          | Range    |
| Solexa/early Illumina (1.0)   | 59 to 126 (; to ~)           | 64     | Solexa        | -5 to 62 |
| Illumina 1.3+                 | 64 to 126 (@ to $\tilde{\ }$ | 64     | Phred         | 0 to 62  |
| Sanger standard/Illumina 1.8+ | 33 to 126 (! to ~)           | 33     | Phred         | 0 to 93  |

```
.....
! "#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}-
33
              59
                      73
                                                  126
S - Sanger
         Phred+33.
               93 values
                    (0, 93) (0 to 60 expected in raw reads)
I - Illumina 1.3 Phred+64,
               62 values
                     (0, 62) (0 to 40 expected in raw reads)
         Solexa+64, 67 values (-5, 62) (-5 to 40 expected in raw reads)
```

Figure 7: The ASCII interpretation and ranges of the different Phred score notations used by Illumina and the original Sanger interpretation (Table 3). Although the Sanger format allows a theoretical score of 93, raw sequencing reads typically do not exceed a Phred score of 60. In fact, most Illumina-based sequencing will result in maximum scores of 41 to 45.

- 1. Which base call is more likely to be incorrect one with a Phred score of "#" or one with a Phred score of ";"?
- 2. Can you guess why the Phred scores are always transformed to ASCII with an offset of at least 33?
- 3. What is the baseline uncertainty that Illumina grants to its base calling algorithm?
- 4. How can you find out which Phred score encoding was used in a given FASTQ file?



#### 2.3 Quality control of raw sequencing data

Quality controls should be done at every analysis step. Ideally, quality control should be proactive and comprehensive — see it as a chance to get to know your data, which will enable you to perform downstream analyses with (more) appropriate assumptions and parameters. Even if flaws and biases are identified, you may be able to correct those problems *in silico*.

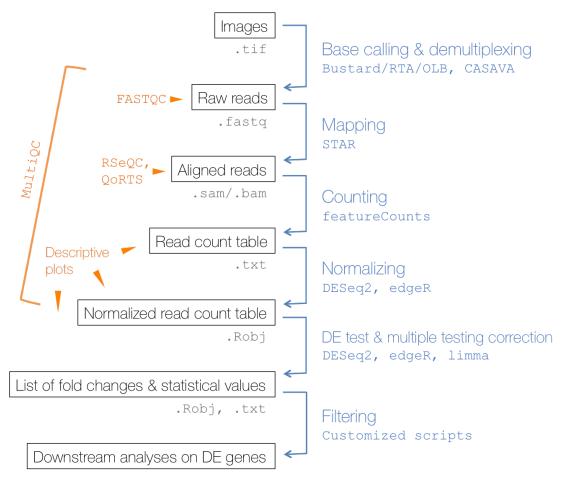


Figure 8: Typical bioinformatics workflow of differential gene expression analysis with commonly used tools (shown in blue). Tools for quality control are marked in orange (with MultiQC allowing the convenient combination of numerous QC results). The most commonly used file formats to store the results of each processing step are indicated in gray.

Since an analysis typically starts with the raw reads (stored in FASTQ files), your first step should be to check the overall quality of the sequenced reads. A poor RNA-seq run will be characterized by the presence of one or more of the following types of uninformative sequences:

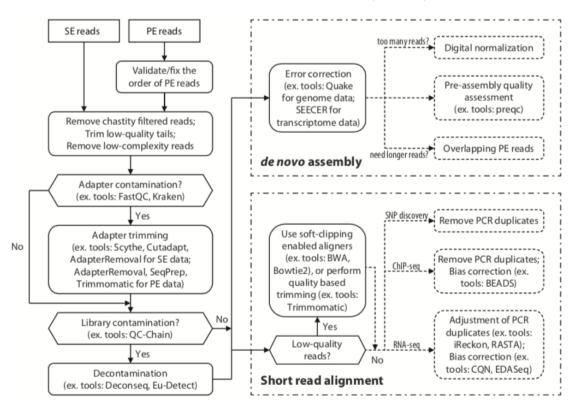
- PCR duplicates\*\*
- adapter contamination
- rRNA and tRNA reads
- unmappable reads, e.g. from contaminating nucleic acids

All but the last category of possible problems can be detected using a program called FASTQC is released by the Babraham Institute and can be freely downloaded at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. It essentially aggregates the quality scores and other properties of the individual reads (e.g. GC content) stored in a given FASTQ file. For each type of feature that it checks, FastQC flags the results with either "pass", "warning", or "fail", depending on how far the sample deviates from a hypothetical dataset without significant bias. Keep in mind though that some sample types are expected to

<sup>\*</sup>It is impossible to distinguish whether identical reads represent PCR duplicates or independent occurrences of the exact same transcript fragment.

have certain biases, so not all "fail" verdicts mean that the sequencing should be repeated! RNA-seq data, for example, tends to have clear signs of non-uniform base content distributions for the first 10-15 bp of most reads, which will usually result in a "warning" or "fail" by FastQC. However, this is a property that has been observed for the vast majority of RNA library preparation protocols and it is attributed to the random hexamer priming step, which appears to not quite be as random as one would hope for (Hansen et al., 2010)† Table 9 contains the details of each FastQC assessment and the expected results; a great FASTQC tutorial was written by the Michigan State University's Core Facility: https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/.

Zhou and Rokas (2014) provide a good summary of typical issues of Illumina sequencing in general and subsequent steps that can be taken to alleviate some of them (Figure 9).



**Figure 9:** Comprehensive workflow of quality controls for high-throughput sequencing data. Rounded rectangles represent QC procedures, hexagons represent decisionmaking steps, and dotted lines represent QC procedures that are optional or applicable to only certain types of studies. Figure from (Zhou and Rokas, 2014).

To run FASTQC, use the following command:

```
$ mkdir fastqc_results # make a folder to store the results

# run FastQC (for the course it's available in the software folder)

$ "/mat/software/FastQC/fastqc ERR458493.fastq.gz --extract -o fastqc_results

# have a look at the results

$ ls fastqc_results/ERR458493_fastqc/

fastqc_data.txt

fastqc.fo

fastqc_report.html # open this to get a quick visual impression of the

results

Icons/
Images/
summary.txt # textual summary
```

 $<sup>^{\</sup>dagger}$ See https://sequencing.qcfail.com/articles/positional-sequence-bias-in-random-primed-libraries/ for an indepth discussion.

```
cat fastqc_results/ERR458493_fastqc/summary.txt
15
    PASS Basic Statistics ERR458493.fastq.gz
16
17
    PASS Per base sequence quality ERR458493.fastq.gz
    FAIL Per tile sequence quality ERR458493.fastq.gz
    PASS Per sequence quality scores ERR458493.fastq.gz
    FAIL Per base sequence content ERR458493.fastq.gz
20
    PASS Per sequence GC content ERR458493.fastq.gz
21
    PASS Per base N content ERR458493.fastq.gz
22
    PASS
         Sequence Length Distribution ERR458493.fastq.gz
23
         Sequence Duplication Levels ERR458493.fastq.gz
    WARN
24
25
    PASS
          Overrepresented sequences ERR458493.fastq.gz
    PASS
          Adapter Content ERR458493.fastq.gz
26
    WARN
          Kmer Content ERR458493.fastq.gz
```

If you ran FASTQC on more than one file, you may want to combine the plots with the brief text summary to quickly identify outlier samples. The following commands extract all test results that did not pass (grep -v PASS) and combines them with all images into a single PNG file using the montage tool. All commands are carried out for the sample names stored in files.txt (one file name per line). convert can be used to merge all PNG files into a single PDF file.

```
extract the IDs of the individual files for WT replicate 1
  $ awk '$3 == "WT" && $4 == 1 {print $1}' ERP004763_sample_mapping.tsv > files.
     t.xt.
  $ head -n3 files.txt
    ERR458493
    ERR458494
    ERR458495
  $ while read ID
       grep -v PASS ${ID}_fastqc/summary.txt | \
11
       montage txt:- ${ID}_fastqc/Images/*png \
12
            -tile x3 -geometry +0.1+0.1 -title ${ID} ${ID}.png
13
    done < files.txt</pre>
14
15
 $ convert *png fastqc_summary.pdf
```

As you can see, this can be become quite cumbersome for numerous samples. Fortunately, MultiQC allows you to summarize the output of myriad QC programs (such as FastQC) in a very convenient manner (Ewels et al., 2016). We highly recommend to pay http://multiqc.info/ a visit to learn more about its functions!.

```
# run FastQC on all fastq.gz files per sample
2
 $ for SAMPLE in WT_1 WT_2 WT_3 WT_25 # random selection of samples
    mkdir fastqc_results/${SAMPLE}
    ~/mat/software/FastQC/fastqc ~/mat/precomputed/rawReads_yeast_Gierlinski/${
       SAMPLE}/*fastq.gz -o fastqc_results/${SAMPLE}
  # run multiqc within the fastqc_results folder and use the folder names (WT_1
     etc.) as prefixes to the sample names in the final output
 $ cd fastqc_results/
 $ "/mat/software/anaconda2/bin/multiqc . --dirs --interactive -o QC/
10
  # either open the resulting html on the server
12
 $ firefox multiqc_report.hmtl
13
14
 # or download it on to your computer:
15
  $ scp <username >@<IP address >: <path on the server to >/multiqc_report.html .
```

### 3 Mapping reads with and without alignment

In order to identify the transcripts that are present in a specific sample, the genomic origin of the sequenced cDNA fragments must be determined. The assignment of sequenced reads to the most likely locus of origin is called *mapping* and it is a crucial step in almost all high-throughput sequencing experiments. One way to solve this string-matching problem is to figure out *where* a short sequence of nucleotides has its best match along the very long sequence that is the (transcribed) genome. Since this involves the lining up of individual letters of two (or more) given strings, these approaches are known as **read alignment**.

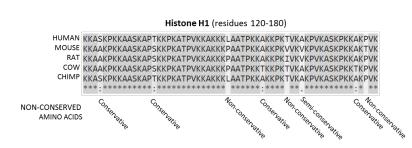


Figure 10: Sequence alignment of residues 120-180 of mammalian histone proteins. The symbols in the last line highlight letters that diverge between the different species, i.e. these are letters that cannot be matched while the majority of the sequence stretches align perfectly. Figure by Thomas Shafee (https://commons.wikimedia.org/w/index.php?curid=37188728).

Sequence alignment has been a long-standing research question of computational biology as bioinformaticians have tried to compare stretches of RNA, DNA and protein sequences since the 1970s; most often to determine sequence homologies and infer phylogenetic relationships (Figure 10). There are many non-trivial details to the seemingly simple problem, for example, one needs to decide how to handle mis-matches and gaps, whether we truly need a global alignment (for the entire lengths of both sequences), and at one point one decides that two strings cannot be reasonably aligned to each other. Equally important are practical aspects, i.e. we need clever ways to find the best possible alignment without actually computing all possible solutions because that would very quickly become a computationally intractable problem.

The general challenge of short read alignment following high-throughput sequencing is to map millions of reads accurately and in a reasonable time, despite the presence of sequencing errors, genomic variation and repetitive elements. The different alignment programs employ various strategies that are meant to speed up the process (e.g., by indexing the reference genome) and find a balance between mapping fidelity and error tolerance. Most tools for short read alignment use algorithms that follow the "seed-and-extend" approach\*:

- 1. Use a subset of the read as a "seed" for which the tool is going to find the best possible match in an index made up from the reference genome.
- 2. Every matched seed is extended on both sides under certain constraints (e.g. max. number of permissable mismatches) until as much of the read is aligned as possible. This is the actual alignment step, which is searching for the optimal local alignment of a given read at a position within the reference genome that's anchored around the seed's match. That local alignment step is usually performed using the Smith-Waterman algorithm (Smith and Waterman, 1981), one of the cornerstones of computational biology.

This means that the parameters for how many mismatches one allows may need to be tuned depending on the experiment at hand. For example, sequencing results of human tumors can probably be expected to show greater inherent discrepancies with the reference genome than healthy mouse cells obtained from one of the inbred reference strains. The same holds true for different sequencing platforms – many third generation sequencing techniques including Nanopore and PacBio have higher error rates than Illumina short read sequencing, which needs to be taken into consideration during the alignment step. For an excellent overview of short read alignment strategies, see Reinert et al. (2015).

The main challenge of RNA-seq data in particular (in contrast to genome sequencing) is the *spliced alignment* of exon-exon-spanning reads (Figure 11) and the presence of multiple different isoforms of the same gene. Some alignment programs tried to mitigate this problem by aligning to the transcriptome, but this approach is limited to known transcripts and thus heavily dependent on the annotation. Moreover, many reads will

<sup>\*</sup>For a great explanation of the differences between the most popular alignment tools, see Ye et al. (2015).

overlap with more than one isoform, introducing mapping ambiguity. The most popular RNA-seq alignment programs (e.g., STAR, TopHat, GSNAP; see Engström et al. (2013) for a review of RNA-seq aligners) use the entire genome as the reference and existing gene annotation as a guide for where to expect large gaps (i.e., intron sequences that are not part of sequence reads of mRNA-derived fragments). If reads cannot be placed despite accounting for the known introns, most tools will also attempt to identify novel splice events. This is based on certain assumptions about transcript structures that may or may not be correct (e.g., most algorithms search for the most parsimonious combination of exons which might not reflect the true biological driving force of isoform generation). Additionally, lowly expressed isoforms may have very few reads that span their specific splice junctions while, conversely, splice junctions that are supported by few reads are more likely to be false positives. Therefore, novel splice junctions will show a bias towards strongly expressed genes. Until reads routinely are sequenced longer, the alignment of spliced reads will therefore remain the most prevalent problems of RNA-seq data<sup>†</sup>

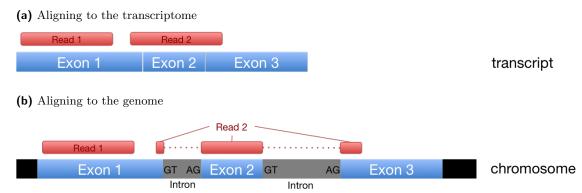


Figure 11: RNA-seq of mRNAs produces 2 kinds of reads: single exon reads (Read 1) and exon-exon-spanning reads (Read 2). While single exon reads can be aligned equally easily to the genome and to the transcriptome, exon-exon-spanning reads have to be split to be aligned properly if the genome sequence is used as a reference (b).

Despite tremendous progress in terms of speed, read alignment is often by far the most computationally intensive step of the entire bioinformatics RNA-seq pipeline. Furthermore, once we have the information about the locus of origin for every single read (= alignment result), we subsequently need to count the number of reads that overlap with known genes or transcripts (Section 4) because the ultimate goal of RNA-seq typically is the quantification of transcripts; it is usually not sufficient to present a catalogue of genes that were found to be expressed in the samples at hand. The most recent approaches to achieve reliable and fast quantification of transcript abundances have therefore dispensed with the idea of the tedious alignment step; they are only focused on judging sequence similarities without assgining residue-residue correspondences. These alignment-free methods – as implemented by Salmon and Kallisto (Patro et al., 2017; Bray et al., 2016) – follow the rationale that similar sequences share similar subsequences (k-mers or words). Counting the shared k-mer occurrences should therefore give a good relative measure of sequence similarity, irrespective of the precise genome location (Zielezinski et al., 2017). This also means that the quantitative information about expression levels of individual genes will be the immediate result of the read mapping step without the need for additional tools.

To assess the sequence similarity, the following steps are typically taken (Figure 12):

- 1. The sequences for comparison (reads, reference) are sliced up into collections of unique (!) k-mers of a given length k.
- 2. For each pairwise comparison, we count the number of times a specific k-mer appears in both sequence strings that are being compared.
- 3. To assess the similarity between the two strings, some sort of distance function is employed, for example, Euclidian distance; two identical sequences should have a distance of zero.

In practice, Salmon and Kallisto will first generate an index of k-mers from all known transcript sequences. These transcript k-mers will then be compared with the k-mers of the sequenced reads, yielding a pseu-

 $<sup>^{\</sup>dagger}$ For comparisons of the approaches to differential isoform quantification, see Ding et al. (2017), Hooper (2014), Su et al. (2014).

doalignment that describes how many k-mers a read shares with a set of compatible transcripts (based on the distance scores; see Figure 13). By grouping all pseudoalignments that belong to the same set of transcripts, they can then estimate the expression level of each transcript model.

The pseudoalignment tools offer a dramatic increase in speed, but there are some downsides that you may need to consider. The most obvious caveat of the pseudoaligners is their absolute reliance on a precise and comprehensive transcript (cDNA!) annotation. When a sequenced fragment originates from a genomic locus that is not part of the pre-defined cDNA annotation (e.g. an intron or an unannotated transcript), it can be falsely mapped to a transcript since the relevant genomic sequence is not available. While alignment-based tools will discard reads if their edit distance becomes too large, pseudoalignment currently does not entail a comparable scoring system to validate a the compatibility; therefore there is no safeguard against spurious alignments. This means, for example, that a 100-bp-read can pseudoalign with a transcript with which it shares only a single k-mer – if no better match can be found within the universe of the pre-generated cDNA index.

While the lightweight mapping tools such as Kallisto and Salmon have been shown to perform almost as good as classic alignment tools on *simulated* data, it is clear that these programs are still under active development (Srivastava et al., 2019) and are prone to spurious alignments, particularly for lowly expressed genes.

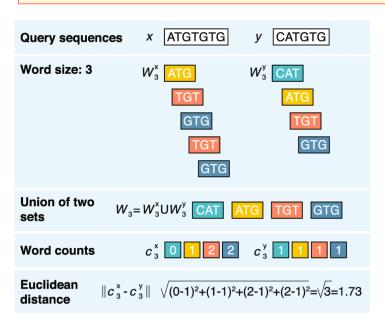


Figure 12: General strategy of alignment-free sequence comparisons. Both query and reference sequence are split up into unique k-mers of a specified length (here: 3) and the (dis)similarity is computed based on the number of shared words. Figure from Zielezinski et al. (2017).

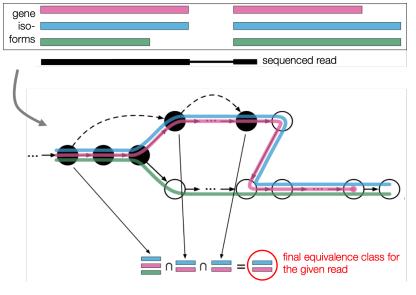


Figure 13: Kallisto first builds an index of all unique k-mers based on the cDNA sequences of annotated transcripts. These k-mers are then represented as nodes within a targeted De-Bruijn-Graph (T-DBG). To assess which transcript is being represented by a given read, the read's unique k-mers are compared to the nodes of the T-DBG. Figure from Bray et al. (2016).

#### 3.1 Reference genomes and annotation

Irrespective of the type of read mapping (alignment- or pseudoalignment), the presence of a reference sequence as well as gene annotation (i.e., which parts of the reference sequence correspond to genes) are fundamental to the majority of RNA-seq projects.

Genome sequences and annotation are often generated by consortia such as (mod)ENCODE, The Mouse Genome Project, The Berkeley Drosophila Genome Project, and many more. The results of these efforts can either be downloaded from individual websites set up by the respective consortia or from pan-species data bases such as the one hosted by the University of California, Santa Cruz (UCSC; https://genome.ucsc.edu/) or the European genome resource, Ensembl (http://www.ensembl.org).

UCSC and Ensembl try to organize, unify, and provide access to a wide range of genomes and annotation data. The advantage of downloading data from UCSC (or Ensembl) is that even if you were to work with different species, the file formats and naming conventions will be consistent (and your scripts will be more likely to work). The documentation at https://genome.ucsc.edu/FAQ/FAQreleases.html gives a good overview of the genomes and annotation that are available at UCSC. Unfortunately, UCSC and Ensembl differ in their naming conventions and the frequency of updates. In addition, the gene annotations provided by either RefSeq or Ensembl are based on different annotation pipelines trying to determine the details about untranslated regions, introns, exons etc.<sup>‡</sup> (Zhao and Zhang, 2015).



Note that UCSC and Ensembl use slightly different naming conventions that can seriously affect downstream analyses. Try to stick to one source.

Always ensure you know exactly which version of a genome and annotation you are working with.

Reference sequences are usually stored in plain text FASTA files that can either be compressed with the generic gzip command or, using the tool faToTwoBit, into .2bit format.

We used the UCSC Genome Browser website to download the reference genome of yeast (go to https://genome.ucsc.edu/, click on "Downloads" \rightarrow "Genome Data" to reach http://hgdownload.soe.ucsc.edu/downloads.html, where you will find an overview of all available reference genomes and the respective links).

#### 3.1.1 File formats for defining genomic regions

While the reference sequence is not much more than a very long string of A/T/C/G/N, various file formats exist to store information about the location of transcription start sites, exons, introns etc. All formats agree on having one line per genomic feature, but the nature of the information contained in each row can vary strongly between the formats.

GFF The General Feature Format has nine required fields; the first three fields form the basic name, start, end tuple that allows for the identification of the location in respect to the reference genome (e.g., bases 100 to 1,000 of chromosome 1). Fields must be separated by a single TAB, but no white space. All but the final field in each feature line must contain a value; missing values should be denoted with a '.'

There are two versions of the GFF format in use which are similar, but not compatible:

<sup>&</sup>lt;sup>‡</sup>Yandell and Ence (2012) and Mudge and Harrow (2016) wrote excellent introductions of gene annotation intricacies.

- 1. GFF version 2 (Sanger Institute; see http://gmod.org/wiki/GFF2 or https://www.sanger.ac.uk/resources/software/gff/spec.html)
- 2. GFF version 3 (Sequence Ontology Project; see http://gmod.org/wiki/GFF3)

GFF2 files use the following fields:

- 1. reference sequence: coordinate system of the annotation (e.g., "Chr1")
- 2. source: describes how the annotation was derived (e.g., the name of the annotation software)
- 3. **method**: annotation type (e.g., gene)
- 4. start position: 1-based integer, always less than or equal to the stop position
- 5. **stop position**: for zero-length features, such as insertion sites, start equals end and the implied site is to the right of the indicated base
- 6. score: e.g., sequence identity
- 7. **strand**: "+" for the forward strand, "-" for the reverse strand, or "." for annotations that are not stranded
- 8. **phase**: codon phase for annotations linked to proteins; 0, 1, or 2, indicating the frame, or the number of bases that should be removed from the beginning of this feature to reach the first base of the next codon
- 9. **group**: contains the class and ID of an annotation which is the logical parent of the current one ("feature is composed of")

GFF3 files (asterisk denotes difference to GFF2)

- 1. reference sequence
- 2. source
- 3. **type\***: constrained to be either: (a) a term from the "lite" sequence ontology, SOFA; or (b) a SOFA accession number.
- 4. start position
- 5. stop position
- 6. score
- 7. strand
- 8. phase
- 9. attributes\*: list of feature attributes as TAG=VALUE pairs; spaces are allowed in this field, multiple TAG=VALUE pairs are separated by semicolons; the TAGS have predefined meanings:
  - ID (must be unique)
  - Name (display name)
  - Alias (secondary name)
  - Parent
  - Target (the format of the value is "target\_id start end [strand]")
  - Gap (in CIGAR format)
  - Derives\_from (database cross reference)
  - Ontology\_term

```
# GFF-version 2
ΙV
                         5506900 5506996 . + .
                                                    Transcript B0273.1
        curated exon
                                                    Transcript B0273.1
ΙV
        curated exon
                         5506026 5506382 . + .
ΙV
        curated exon
                         5506558 5506660 . + .
                                                    Transcript B0273.1
# GFF-version 3
ctg123
            exon
                  1300
                         1500
                                          TD = exon 00001
                                          ID = exon00002
ctg123
            exon
                  1050
                         1500
                   3000
                         3902
                                          TD = exon 00003
ctg123
            exon
```

GTF The Gene Transfer Format is based on the GFF, but is defined more strictly. (It is sometimes referred to as GFF2.5 because the first eight GTF fields are the same as GFF2, but, as for GFF3, the 9th field has been expanded into a list of attributes.) Contrary to GFF files, the TYPE VALUE pairs of GTF files are separated by one space and must end with a semi-colon (followed by exactly one space if another attribute is added afterwards):

```
# example for the 9th field of a GTF file
    gene_id "Em:U62.C22.6"; transcript_id "Em:U62.C22.6.mRNA"; exon_number 1
```

The gene\_id and transcript\_id values are globally unique identifiers for the genomic locus of the transcript or the same transcript itself and must be the first two attributes listed. Textual attributes should be surrounded by double quotes.

```
# GTF example
chr1 HAVANA gene 11869 14412 . + . gene_id "ENSG00000223972.4";
   transcript_id "ENSG00000223972.4"; gene_type "pseudogene"; gene_status "
   KNOWN"; gene_name "DDX11L1"; transcript_type "pseudogene"; transcript_status
    "KNOWN"; transcript_name "DDX11L1"; level 2; havana_gene "
   OTTHUMG0000000961.2";
chr1 HAVANA transcript 11869 14409 . + . gene_id "ENSG00000223972.4";
   transcript_id "ENST00000456328.2"; gene_type "pseudogene"; gene_status "
   KNOWN"; gene_name "DDX11L1"; transcript_type "processed_transcript";
   transcript_status "KNOWN"; transcript_name "DDX11L1-002"; level 2; tag "
   basic"; havana_gene "OTTHUMG0000000961.2"; havana_transcript "
   OTTHUMT00000362751.1";
```

More information on GTF format can be found at http://mblab.wustl.edu/GTF2.html (or, for the most recent version: http://mblab.wustl.edu/GTF22.html).

The following screenshot illustrates how you can, for example, download a GTF file of yeast transcripts from the UCSC Genome Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables).



GTF files downloaded from the UCSC Table Browser have the same entries for gene\_id and

transcript\_id. This can lead to problems with downstream analysis tools that expect exons of different isoforms to have the same gene\_id, but different transcript\_ids.

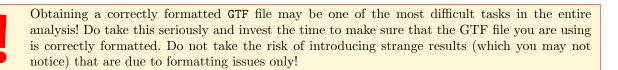
Here's a way to get a properly formatted GTF file (i.e., with different entries for gene\_name and transcript\_id) of RefSeq genes using the UCSC tool genePredToGtf:

```
first, download a table for "Genes and Gene Predictions" from the UCSC Table
   Browser indicating as the output format: "all fields from selected table"
 NOTE: this may not work for all GTF files downloaded from UCSC! genePredToGtf
    is very finicky and every organism's annotation may have been generated and
    deposited by a different person)
$ head -n1 allfields_hg19.txt
       name
               chrom
                       strand
                               txStart txEnd
                                               cdsStart
                                                                cdsEnd
   exonCount
                   exonStarts
                                    exonEnds
                                                            name2
                                                                    cdsStartStat
       cdsEndStatexonFrames
# remove first column and first line, feed that into genePredToGtf
cut -f 2- allfields_hg19.txt | sed '1d' | 
  genePredToGtf file stdin hg19_RefSeq.gtf
$ head -n1 hg19_RefSeq.gtf
                            67000051 . + . gene_id "SGIP1"; transcript_id "
chr1 stdin exon 66999639
   NM_032291"; exon_number "1"; exon_id "NM_032291.1"; gene_name "SGIP1";
```

BED format The BED format is the simplest way to store annotation tracks. It has three required fields (chromosome, start, end) and up to 9 optional fields (name, score, strand, thickStart, thickEnd, itemRgb, blockCount, blockSizes, blockStarts). The number of fields per line can thus vary from three to twelve, but must be consistent within a file and must obey the order, i.e. lower-numbered fields must always be populated if higher-numbered fields are used. Fields seven to twelve are only necessary if regions should be drawn in a Genome Browser with the typical appearance known for gene tracks. Note that the BED format indicates a region with 0-based start position and 1-based end position (GTF/GFF are 1-based in both positions§.

```
# 6-column BED file defining transcript loci
               67210768 NM_032291 0 +
chr1
      66999824
                           NM_052998 0 +
      33546713
                33586132
chr1
chr1
      25071759
                25170815
                           NM_013943 0 +
chr1
      48998526
                50489626
                           NM_032785 0 -
```

- 1. Which annotation data base is currently recommended for poly(A)-enriched RNA-seq data?
- 2. Which annotation data base would you use for RNA-seq of total RNA?
- 3. How many non-coding RNA transcripts does the Ensembl annotation for the human reference hg19 contain? Find out via the command line.



 $<sup>\</sup>S$ See http://alternateallele.blogspot.de/2012/03/genome-coordinate-conventions.html for a very god explanation of 0- vs. 1-based interval notations)

#### 3.2 Aligning reads using STAR

Numerous alignment programs have been published in the past (and will be published in the future), and depending on your specific project, some aligners may be preferred over others. For example, detection of structural variants and fusion transcripts will require very specific settings or a dedicated alignment tool for that particular task.

For straight-forward RNA-seq data that will be used for differential gene expression analysis, STAR (Dobin et al., 2013) has been shown to be very efficient and reasonably sensitive. The main caveat is the large number of putative novel splice sites that should be regarded with caution (Engström et al., 2013). The very detailed documentation of STAR can be found in Alex Dobin's github account: https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf and lots of advice regarding optimal parameter settings can be found in Dobin and Gingeras (2016).

Another popular aligner is TopHat, which is basically a sophisticated wrapper around the genomic aligner Bowtie (Kim et al., 2013). Generally, the specific choice of alignment tool has relatively little impact on the downstream analyses (compared to the significant impact that the choices of annotation, quantification tools, and differential expression analysis tools have; see, for example Costa-Silva et al. (2017); Everaert et al. (2017); Williams et al. (2017)). However, Ballouz et al. (2018) argue that some tools might offer a high degree of optimization for samples with specific characteristics that will not be as optimally served by using the usual top-of-the-class-tool. In any case, we strongly recommend to read the documentation of any tool you are going to use in order to tune the parameters that might be applicable to your samples.

Shown here are the example commands for the alignment to the S. cerevisiae genome using STAR.

1. Generate genome index This step has to be done only once per genome type (and alignment program). The index files will contain all the information from the reference genome in a compressed format that is optimized for efficient access and comparison with the query read sequences. This includes clever representations of the genome sequence, the chromosome names and lengths, splice junctions coordinates, and information about the genes (e.g. the strand). The main input files for this step therefore encompass the reference genome sequence and an annotation file.

```
create a directory to store the index in
  $ REF_DIR=~/mat/referenceGenomes/S_cerevisiae
  $ mkdir ~/STARindex
   set a variable for STAR access
  $ runSTAR=~/mat/software/STAR-2.5.4b/bin/Linux_x86_64_static/STAR
  # Run STAR in "genomeGenerate" mode
   ${runSTAR} --runMode genomeGenerate \
       -genomeDir ~/STARindex \ # index will be stored there
      --genomeFastaFiles ${REF_DIR}/sacCer3.fa \ # reference genome sequence
11
      --sjdbGTFfile ${REF_DIR}/sacCer3.gtf \ # annotation file
12
      --sjdbOverhang 49 # should be read length minus 1; length of the
13
          genomic sequence around the annotated junction to be used for the
          splice junctions database
      --runThreadN 1 \ # can be used to define more processors
```

2. **Alignment** This is the step that actually matches every read to the reference sequence, using the additional information about splice junctions etc. The alignment step therefore has to be completed for every individual FASTQ file.

For the particular data set used here, each sample was distributed over seven flow cell lanes, i.e., each sample has seven separate FASTQ files. Unlike most aligners, STAR will merge those files on the fly if multiple input file names are indicated. The file names must be separated by a comma without whitespaces.

```
$ FILES=`ls -m rawReads_yeast_Gierlinski/WT_1/*fastq.gz| sed 's/ //g'`
  $ FILES=`echo $FILES | sed 's/ //g'`
  # execute STAR in the runMode "alignReads"
  $ ${runSTAR} --genomeDir ${REF_DIR}/STARindex/ \
    --readFilesIn $FILES \
    --readFilesCommand zcat \ # necessary because of gzipped fastq files
11
    --outFileNamePrefix alignment_STAR/WT_1_ \
12
    --outFilterMultimapNmax 1 \ # only reads with 1 match in the reference
13
        will be returned as aligned
    --outReadsUnmapped Fastx \ # will generate an extra output file with the
        unaligned reads
    --outSAMtype BAM SortedByCoordinate \
15
    --twopassMode Basic \ # STAR will perform mapping, then extract novel
16
        junctions which will be inserted into the genome index which will
        then be used to re-map all reads
    --runThreadN 1 # can be increased if sufficient computational power is
17
        available
```

The default settings or the settings shown here may not be optimal for your application (or even for this application)! Please, read the STAR manual and Dobin and Gingeras (2016) and decide which parameters are suitable for your data set!

3. BAM file indexing Most downstream applications will require a .BAM.BAI file together with every BAM file to quickly access the BAM files without having to load them into memory. To obtain these index files, simply run the samtools index command for each BAM file once the mapping is finished.

```
# export samtools path (for convenience)
$ export PATH=/home/classadmin/software/samtools-1.7:$PATH

# index the BAM file
$ samtools index alignment_STAR/WT_1_Aligned.sortedByCoord.out.bam
```

STAR has more than 100 parameters, which are all described in its manual. While the command we show above will work well for most applications (although there's one catch as you will see later on!), we strongly recommend you familiarize yourself with the STAR manual. The most important points are:

- handling of multi-mapped reads (e.g., how the best alignment score is assigned and the number and order in which secondary alignments are reported);
- optimization for very small genomes;
- defining the minimum and maximum intron sizes that are allowed which will basically determine how large the insertions are allowed to be that STAR has to include in order to make a certain read fit to a genome locus;
- handling of genomes with more than 5,000 scaffolds (usually reference genomes in a draft stage);
- using STAR for the detection of chimeric (fusion) and circular transcripts.



Which STAR options shown above:

- ... have to be different for every sample that you map?
- ... should remain consistent for all samples of one analysis?
- ... will affect the number of reads in the final output file?

Check the Section 7.1 (Appendix) for how the alignment could be done better for the yeast data.

#### 3.3 Storing aligned reads: SAM/BAM file format

The output option of STAR already indicates that the results of the alignment will be stored in a SAM or BAM file. The Sequence Alignment/Map (SAM) format is, in fact, a generic nucleotide alignment format that

describes the alignment of sequencing reads (or query sequences) to a reference. The human readable, TAB-delimited SAM files can be compressed into the Binary Alignment/Map format. These BAM files are bigger than simply gzipped SAM files, because they have been optimized for fast random access rather than size reduction. Position-sorted BAM files can be indexed so that all reads aligning to a locus can be efficiently retrieved without loading the entire file into memory. To convert a BAM file into a SAM file, use samtools view:

```
# export our local installation of samtools into your PATH

$ export PATH=~/mat/software/samtools-1.7/: $PATH

$ samtools view -h WT_1_Aligned.sortedByCoord.out.bam > WT_1_Aligned.

sortedByCoord.out.sam
```

As shown in Figure 14, SAM files typically contain a short header section and a very long alignment section where each row represents a single read alignment. The following sections will explain the SAM format in a bit more detail. For the most comprehensive and updated information go to https://github.com/samtools/hts-specs.

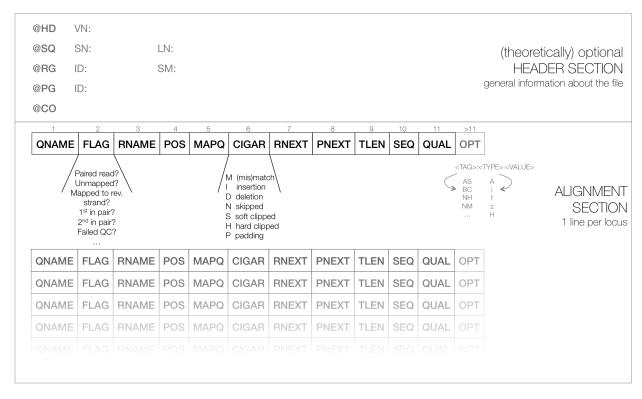


Figure 14: Schematic representation of a SAM file. Each line of the optional header section starts with "@", followed by the appropriate abbreviation (e.g., SQ for sequence dictionary which lists all chromosomes names (SN) and their lengths (LN)). See Table 10 for all possible entries and tags. The vast majority of lines within a SAM file typically correspond to read alignments where each read is described by the 11 mandatory entries (black font) and a variable number of optional fields (grey font). See Section 3.3.2 for more details.

#### 3.3.1 The SAM file header section

The header section includes information about how the alignment was generated and stored. All lines in the header section are tab-delimited and begin with the "@" character, followed by a two-letter record type abbreviation, followed by tag:value pairs, where tag is again a two-letter string. Which tags are mandatory or optional for each record type and the format of the respective value entries are detailed in the SAM file specifications (The SAM/BAM Format Specification Working Group, 2019).

For example, the "@SQ" line in the header section should be used to store information about the names and lengths of the *reference sequences* to which the reads were aligned. The paragraph from the SAM file specifications related to the definition of the "@SQ" record type looks as follows:

| @SQ                                                                                | Reference sequence dictionary. The order of CSO lines defines the alignment sorting order.                      |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| SN*                                                                                | Reference sequence name. The SN tags and all individual AN names in all QSQ lines must be                       |
|                                                                                    | distinct. The value of this field is used in the alignment records in RNAME and RNEXT fields.                   |
|                                                                                    | Regular expression: [:rname:^**=][:rname:]*                                                                     |
| LN*                                                                                | Reference sequence length. Range: $[1, 2^{31} - 1]$                                                             |
| AH                                                                                 | Indicates that this sequence is an alternate locus. <sup>7</sup> The value is the locus in the primary assembly |
|                                                                                    | for which this sequence is an alternative, in the format 'chr: start-end', 'chr' (if known), or '*' (if         |
|                                                                                    | unknown), where 'chr' is a sequence in the primary assembly. Must not be present on sequences                   |
|                                                                                    | in the primary assembly.                                                                                        |
| AN                                                                                 | Alternative reference sequence names. A comma-separated list of alternative names that tools                    |
|                                                                                    | may use when referring to this reference sequence. <sup>8</sup> These alternative names are not used            |
|                                                                                    | elsewhere within the SAM file; in particular, they must not appear in alignment records' RNAME                  |
|                                                                                    | or RNEXT fields. Regular expression: name(,name)* where name is [:rname:^*=] [:rname:]*                         |
| AS                                                                                 | Genome assembly identifier.                                                                                     |
| DS                                                                                 | Description. UTF-8 encoding may be used.                                                                        |
| M5 MD5 checksum of the sequence. See Section 1.3.1                                 |                                                                                                                 |
| SP Species.                                                                        |                                                                                                                 |
| UR URI of the sequence. This value may start with one of the standard protocols, e |                                                                                                                 |
|                                                                                    | If it does not start with one of these protocols, it is assumed to be a file-system path.                       |

This tells you that if a tool chooses to include the "@SQ" line in the SAM file header, the entries SN (chromosome names) and LN (length of the individual chromosomes) are mandatory, while tags such as the ones spelling out the species (SP) or the path to the reference genome (UR) are optional. For a hypothetical organism with three chromosomes of length 1,000 bp, 1,500 bp, and 3,000 bp, the SAM header should therefore contain the following three lines:

```
@SQ SN:chr1 LN:1000
@SQ SN:chr2 LN:1500
@SQ SN:chr3 LN:3000
```

samtools view -H (note the capitalized "H") can be used to retrieve just the header of a SAM or BAM file. The output from the following example was slightly modified for better readability. See Table 10 for more information about the entries typically stored within the header section.

```
# The default behavior of samtools view is to not show the header section.
    samtools view -h will show both header and alignment section;
    samtools view -H will return the header section only.
   samtools view -H Sample1_Aligned.sortedByCoord.out.bam
    @HD VN:1.4
    @SQ SN:chrI
                  LN:230218
    @SQ SN:chrII LN:813184
    @SQ SN:chrIII LN:316620
10
    @SQ SN:chrIV
                  LN:1531933
11
    @SQ SN:chrV
                  LN:576874
12
13
    @PG ID:STAR VN:STAR_2.4.0e CL:STAR --runThreadN 8 --genomeDir STAR-sacCer3
14
        --readFilesIn Lane1.fastq.gz,Lane2.fastq.gz,Lane3.fastq.gz,Lane4.fastq.gz,
       Lane5.fastq.gz,Lane6.fastq.gz,Lane7.fastq.gz --readFilesCommand zcat -
       outFileNamePrefix Sample1_ --outSAMtype BAM SortedByCoordinate --
       outSAMunmapped Within
                                --outFilterMultimapNmax 1
1.5
    @CO user command line: STAR --genomeDir STAR-sacCer3 --readFilesIn Lane1.
16
       fastq.gz,Lane2.fastq.gz,Lane3.fastq.gz,Lane4.fastq.gz,Lane5.fastq.gz,Lane6
        .fastq.gz,Lane7.fastq.gz --readFilesCommand zcat --outFileNamePrefix
       Sample1_ --outFilterMultimapNmax 1 --outSAMunmapped Within --runThreadN 8
       --outSAMtype BAM SortedByCoordinate
```

#### 3.3.2 The SAM file alignment section

The optional header section is followed by the alignment section where each line corresponds to one sequenced read. For each read, there are 11 mandatory fields that always appear in the same order:

```
<QNAME> <FLAG> <RNAME> <POS> <MAPQ> <CIGAR> <MRNM> <MPOS> <ISIZE> <SEQ> <QUAL>
```

If the corresponding information is unavailable or irrelevant, field values can be '0' or '\*' (depending on the field, see Table 4), but they cannot be missing! After the 11 mandatory fields, a variable number of optional fields can be present (Figure 14).

Here's an example of one single line of a real-life SAM file:

```
ERR458493.552967 16 chrl 140 255 12M61232N37M2S * 0 0
CCACTCGTTCACCAGGGCCGGCGGGCTGATCACTTTATCGTGCATCTTTGGC BB?
HHJJIGHHJIGIIJJIJGIJIJJIIIGHBJJJJJHHHHFFDDDA1+B NH:i:1 HI:i:1 AS:i:41 nM:
i:2
```

The following table explains the format and content of each field. The FLAG, CIGAR, and the optional fields (marked in blue) are explained in more detail below.

**Table 4:** Overview of the fields that are required for each row of a SAM file's alignment section. The number of optional fields can vary widely between different SAM files and even between reads within in the same file. The field types marked in blue are explained in more detail in the main text below.

| Pos. | Field | Example entry          | Description                                                                                                                                                                                                                                                          | NA<br>value |
|------|-------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1    | QNAME | Read1                  | Query template (= read) name (PE: read pair name)                                                                                                                                                                                                                    | required    |
| 2    | FLAG  | 83                     | Information about the read's mapping properties encoded as bit-wise flags (see next section and Table 5).                                                                                                                                                            | required    |
| 3    | RNAME | $\operatorname{chr} I$ | Reference sequence name. This should match a ${\tt @SQ}$ line in the header.                                                                                                                                                                                         | *           |
| 4    | POS   | 15364                  | 1-based leftmost mapping position of the first matching base. Set as 0 for an unmapped read without coordinates.                                                                                                                                                     | 0           |
| 5    | MAPQ  | 30                     | Mapping quality of the alignment. Should be a Phred-scaled posterior probability that the position of the read is incorrect, but the value is completely dependent on the alignment program. Some tools set this to 0 if multiple alignments are found for one read. | 0           |
| 6    | CIGAR | 51M                    | Detailed information about the alignment (see below).                                                                                                                                                                                                                | *           |
| 7    | RNEXT | =                      | PE reads: reference sequence name of the next read. Set to "=" if both mates are mapped to the same chromosome.                                                                                                                                                      | *           |
| 8    | PNEXT | 15535                  | PE reads: leftmost mapping position of the next read.                                                                                                                                                                                                                | 0           |
| 9    | TLEN  | 232                    | PE reads: inferred template length (fragment size).                                                                                                                                                                                                                  | 0           |
| 10   | SEQ   | CCAGGC                 | The sequence of the aligned read on the forward strand (not including indels).                                                                                                                                                                                       | *           |
| 11   | QUAL  | BBH1+B                 | Base quality (same as the quality string in the FASTQ format, but always in Sanger format [ASCII+33]).                                                                                                                                                               | *           |
| 12ff | OPT   | NM:i:0                 | Optional fields (format: $\texttt{::};$ see below).                                                                                                                                                                                                                  |             |

**FLAG** field The FLAG field encodes various pieces of information about the individual read, which is particularly important for PE reads. It contains an integer that is generated from a sequence of Boolean bits (0, 1). This way, answers to multiple binary (Yes/No) questions can be compactly stored as a series of bits, where each of the single bits can be addressed and assigned separately.

Table 5 gives an overview of the different properties that can be encoded in the FLAG field. The developers of the SAM format and samtools tend to use the hexadecimal encoding as a means to refer to the different bits in their documentation. The value of the FLAG field in a given SAM file, however, will always be the decimal representation of the sum of the underlying binary values (as shown in Table 4, row 2).

**Table 5:** The FLAG field of SAM files stores several information about the respective read alignment in one single decimal number. The decimal number is the sum of all the answers to the Yes/No questions associated with each binary bit. The hexadecimal representation is used to refer to the individual bits (questions).

| Binary (Decimal)   | Hex   | Description                                                                                                |
|--------------------|-------|------------------------------------------------------------------------------------------------------------|
| 00000000001 (1)    | 0x1   | Is the read paired?                                                                                        |
| 00000000010 (2)    | 0x2   | Are both reads in a pair mapped "properly" (i.e., in the correct orientation with respect to one another)? |
| 00000000100 (4)    | 0x4   | Is the read itself unmapped?                                                                               |
| 00000001000 (8)    | 0x8   | Is the mate read unmapped?                                                                                 |
| 00000010000 (16)   | 0x10  | Has the read been mapped to the reverse strand?                                                            |
| 00000100000 (32)   | 0x20  | Has the mate read been mapped to the reverse strand?                                                       |
| 00001000000 (64)   | 0x40  | Is the read the first read in a pair?                                                                      |
| 00010000000 (128)  | 0x80  | Is the read the second read in a pair?                                                                     |
| 00100000000 (256)  | 0x100 | Is the alignment not primary? (A read with split matches may have multiple primary alignment records.)     |
| 010000000000 (512) | 0x200 | Does the read fail platform/vendor quality checks?                                                         |
| 10000000000 (1024) | 0x400 | Is the read a PCR or optical duplicate?                                                                    |

A bit is set if the corresponding state is true. For example, if a read is paired, 0x1 will be set, returning the decimal value of 1. Therefore, all FLAG values associated with paired reads must be uneven decimal numbers. Conversely, if the 0x1 bit is unset (= read is not paired), no assumptions can be made about 0x2, 0x8, 0x20, 0x40 and 0x80.

In a run with *single* reads, the flags you will most commonly see are  $\P$ :

- 0: This read has been mapped to the forward strand. (None of the bit-wise flags have been set.)
- 4: The read is unmapped (0x4 is set).
- 16: The read is mapped to the reverse strand (0x10 is set).

 $<sup>\</sup>P$ 0x100, 0x200 and 0x400 are not used by most aligners, but could, in principle be set for single reads.

Some common FLAG values that you may see in a paired-end experiment include:

| 69  | (=1+4+64)     | The read is paired, is the first read in the pair, and is unmapped.          |
|-----|---------------|------------------------------------------------------------------------------|
| 77  | (=1+4+8+64)   | The read is paired, is the first read in the pair, both are unmapped.        |
| 83  | (=1+2+16+64)  | The read is paired, mapped in a proper pair, is the first read in the pair,  |
|     | ,             | and it is mapped to the reverse strand.                                      |
| 99  | (=1+2+32+64)  | The read is paired, mapped in a proper pair, is the first read in the pair,  |
|     | ,             | and its mate is mapped to the reverse strand.                                |
| 133 | (=1+4+128)    | The read is paired, is the second read in the pair, and it is unmapped.      |
| 137 | (=1+8+128)    | The read is paired, is the second read in the pair, and it is mapped while   |
|     | ,             | its mate is not.                                                             |
| 141 | (=1+4+8+128)  | The read is paired, is the second read in the pair, but both are unmapped.   |
| 147 | (=1+2+16+128) | The read is paired, mapped in a proper pair, is the second read in the pair, |
|     | ,             | and mapped to the reverse strand.                                            |
| 163 | (=1+2+32+128) | The read is paired, mapped in a proper pair, is the second read in the pair, |
|     | ,             | and its mate is mapped to the reverse strand.                                |

Note that the strand information of the FLAG field (0x10) does not necessarily indicate the strand of the original transcript. Unless a strand-specific RNA-seq library protocol was used, this only tells you which strand of the ds-cDNA fragment was sequenced.

A useful website for quickly translating the FLAG integers into plain English explanations like the ones shown above is: https://broadinstitute.github.io/picard/explain-flags.html

- 1. How can you retrieve just the alignment section of a BAM file?
- 2. What does a MAPQ value of 20 mean?



- 3. What does a FLAG value of 2 mean?
- 4. Would you be happy or sad if your paired-end read alignments all had FLAG values of 77 or 141?
- 5. Your favorite read pair has FLAG values of 153 and 69. Which read aligned to the forward strand of the reference?

CIGAR [Concise Idiosyncratic Gapped Alignment Report] String The sixth field of a SAM file contains a so-called CIGAR string indicating which operations were necessary to map the read to the reference sequence at that particular locus.

The following operations are defined in CIGAR format (also see Figure 15):

- Alignment (can be a sequence match or mismatch!)
- Insertion in the read compared to the reference Ι
- Deletion in the read compared to the reference
- Skipped region from the reference. For mRNA-to-genome alignments, an N operation represents an intron. For other types of alignments, the interpretation of N is not defined.
- Soft clipping (clipped sequences are present in read); S may only have H operations between them and the ends of the string
- Hard clipping (clipped sequences are NOT present in the alignment record); can only be present as the first and/or last operation
- Padding (silent deletion from padded reference)
- Sequence match (not widely used)
- Sequence mismatch (not widely used)

The sum of lengths of the M, I, S, =, X operations must equal the length of the read.

|   | Reference sequence with aligned reads |   |   |   |   |   |   |   |   | CIGAR string | Explanation |    |     |     |     |   |   |   |   |   |   |   |   |   |   |   |    |            |                      |
|---|---------------------------------------|---|---|---|---|---|---|---|---|--------------|-------------|----|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|----|------------|----------------------|
| ( | Т                                     | G | С | Α | Т | G | Т | Т | Α | G            | Α           | T. | A   | Δ : | * * | G | Α | Т | Α | G | С | Т | G | Т | G | C | ГΑ |            |                      |
|   |                                       |   |   |   |   |   |   |   |   |              |             |    | ,   | Δ,  | 4 6 | G | Α | Т | Α | * | С | Т | G |   |   |   |    | 1M2I4M1D3M | Insertion & Deletion |
|   |                                       |   |   |   |   |   |   |   |   | G            | Α           | Τ. | A A | Δ : | * C | G | Α | Т | Α |   |   |   |   |   |   |   |    | 5M1P1I4M   | Padding & Insertion  |
|   |                                       |   |   |   | Т | G | Т | Т | Α |              |             |    |     |     |     |   |   |   |   |   |   |   |   | Т | G | C | ГΑ | 5M15N5M    | Spliced read         |
|   | аа                                    | а | С | Α | Т | G | Т | Т | Α | G            |             |    |     |     |     |   |   |   |   |   |   |   |   |   |   |   |    | 3S8M       | Soft clipping        |
| 1 | 4 A                                   | A | С | Α | Т | G | Т | T | Α | G            |             |    |     |     |     |   |   |   |   |   |   |   |   |   |   |   |    | 3H8M       | Hard clipping        |

**Figure 15:** Image based on a figure from Li et al. (2009).

**OPT field(s)** Following the eleven mandatory SAM file fields, the optional fields are presented as key-value pairs in the format of <TAG>:<TYPE>:<VALUE>, where TYPE is one of:

- A Character
- i Integer
- f Float number
- Z String
- H Hex string

The information stored in these optional fields will vary widely depending on the mapper and new tags can be added freely. In addition, reads within the same SAM file may have different numbers of optional fields, depending on the program that generated the SAM file. Commonly used optional tags include:

- AS:i Alignment score
- BC:Z Barcode sequence
- HI:i Match is *i*-th hit to the read
- NH:i Number of reported alignments for the query sequence
- NM:i Edit distance of the query to the reference
- MD: Z String that contains the exact positions of mismatches (should complement the CIGAR string)
- RG: Z Read group (should match the entry after ID if @RG is present in the header.

Thus, for example, we can use the NM:i:0 tag to select only those reads which map perfectly to the reference (i.e., have no mismatches).

While the optional fields listed above are fairly standardized, tags that begin with X, Y, and Z are reserved for particularly free usage and will never be part of the official SAM file format specifications. XS, for example, is used by TopHat to encode the strand information (e.g., XS:A:+) while Bowtie2 and BWA use XS:i: for reads with multiple alignments to store the alignment score for the next-best-scoring alignment (e.g., XS:i:30).

#### 3.3.3 Manipulating SAM/BAM files

As indicated above, samtools is a powerful suite of tools designed to interact with SAM and BAM files (Li et al., 2009).

```
# return a peek into a SAM or BAM file (note that a SAM file can also easily be
    inspected using the basic UNIX commands for any text file, such as cat,
    head, less etc.)

$ samtools view InFile.bam | head

# turn a BAM file into the human-readable SAM format (including the header)

$ samtools view -h InFile.bam > InFile.sam

# compress a SAM file into BAM format (-Sb is equivalent to -S -b)

$ samtools view -Sb InFile.sam > OutFile.bam

# generate an index for a BAM file (needed for many downstream tools)

$ samtools index InFile.bam
```

To see all the operations that can be done using samtools, type samtools --help.

The myriad information stored within the alignment files allow you to focus on virtually any subset of read alignments that you may be interested in. The samtools view tool has many options that directly interpret some of the mandatory fields of its alignment section (Table 4), such as the mapping quality, the location and the FLAG field values.

```
# get only unmapped reads
$ samtools view -h \ # show header
-b \ # output a BAM file
-f 4 \ # include only reads where the 0x4 bit is set
Aligned.sortedByCoord.out.bam > unmapped_reads.bam

# get only mapped reads
$ samtools view -hb -F 4 \ # include only reads where the 0x4 bit is NOT set
Aligned.sortedByCoord.out.bam > mapped_reads.bam

# skip read alignments with mapping quality below 20
$ samtools view -h -b -q 20 Aligned.sortedByCoord.out.bam > high_mapq_reads.bam
```

If you would like to filter an alignment file based on any of the optional tags, you will have to resort to means outside samtools. Looking for exact matches using grep can be particularly helpful here, but you should make sure that you make the regular expression search as stringent as possible.

The number of optional SAM/BAM fields, their value types and the information stored within them completely depend on the alignment program and can thus vary substantially. Before you do any filtering on any flag, make sure you know how the aligner generated that value.

Here is an example for **retrieving reads with only one alignment** (aka uniquely aligned reads), which might be useful if STAR was not run with --outFilterMultimapNmax 1:

```
# STAR uses the NH:i tag to record the number of alignments found for a read

# NH:1 => 1 alignment; NH:2 => 2 alignments etc.

$ samtools view -h Aligned.sortedByCoord.out.bam | \ # decompress the BAM file

egrep "^@\|\bNH:i:1\b" | \ # lines with either @ at the beginning of the

line (= header) or exact matches of NH:i:1 are returned

samtools view -S -b -> uniquely_aligned_reads.bam # turn the SAM file lines

from stdin into a BAM file, - indicates standard input for samtools
```

To filter out **reads with insert sizes greater than 1000 bp**, one could make use of the CIGAR string. The following example assume that the alignment program indicated large insertions with the N operator (see Section 3.3.2) – this may not be true for all aligners!

```
# for the sake of simplicity, let's work on the SAM file:
$ samtools view -h WT_1_Aligned.sortedByCoord.out.bam > WT_1_Aligned.
sortedByCoord.out.sam

# here's an example using grep, excluding lines with at least four digits
followed by N

$ egrep -v "[0-9][0-9][0-9]N" WT_1_Aligned.sortedByCoord.out.sam >
smallInsert_reads.sam

# awk can be used to match a regex within a specified column
$ awk '!($6 ~ /[0-9][0-9][0-9]N/) {print $0}' WT_1_Aligned.sortedByCoord.
out.sam > smallInsert_reads.sam
```

To retrieve **intron-spanning reads**, the commands will be similar:

```
# egrep allows for nicer regex syntax than grep
$ egrep "(^@|[0-9]+M[0-9]+N[0-9]+M)" WT_1_Aligned.sortedByCoord.out.sam >
    intron-spanning_reads.sam

# the same result achieved with awk
$ awk '$1 ~ /^@/ || $6 ~ /[0-9]+M[0-9]+N[0-9]+M/ {print $0}' WT_1_Aligned.
    sortedByCoord.out.sam > intron-spanning_reads.sam
```



- 1. How can you extract all reads that were aligned to the reverse strand?
- 2. Does it make sense to filter the BAM files generated by STAR using the mapping quality filter as shown above, i.e., do you find any differences after filtering with -q 40?

## 3.4 Quality control of aligned reads

Once the reads have been aligned, the following properties should be assessed before downstream analyses are started:

- Could most reads be aligned?
- Are there any obvious biases of the read distributions?
- Are the replicate samples as similar to each other as expected?

#### 3.4.1 Basic alignment assessments

There are numerous ways to do basic checks of the alignment success. An alignment of RNA-seq reads is usually considered to have succeeded if the mapping rate is >70%.

The very first QC of aligned reads should be to generally check the aligner's output. The STAR and samtools index commands in Section 3.2 generate the following files:

```
*Aligned.sortedByCoord.out.bam information about the genomic loci of each read incl. its sequence

*Log.final.out alignment statistics

*Log.out commands, parameters, and files used

*Log.progress.out elapsed time

*SJ.out.tab genomic loci where splice junctions were detected and the number of reads overlapping with them

*Unmapped.out.mate1 text file with unmapped reads (similar to original fastq file)
```

Information about the individual output files are given in the STAR manual which you can find in the program's directory (e.g., STAR-STAR\_2.5.4b/doc/STARmanual.pdf) or online (https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf).



- Which STAR output file will you need most for your downstream analyses?
- How can you decrease the size of the \*out.mate1 files? What format do they have?
- Which optional SAM fields does STAR add and what do they represent?

Most aligners will return a summary of the basic stats of the aligned reads, such as the number of mapped reads. For STAR, the information is stored in \*Log.final.out.

```
cat WT_1_Log.final.out
                                     Started job on | Jul 24 17:53:18
                                 Started mapping on | Jul 24 17:53:22
3
                                        Finished on | Jul 24 17:53:51
         Mapping speed, Million of reads per hour | 870.78
                              Number of input reads | 7014609
                         Average input read length | 51
                                        UNIQUE READS:
9
                      Uniquely mapped reads number | 6012470
10
                           Uniquely mapped reads % | 85.71%
11
12
                              Average mapped length | 50.73
                          Number of splices: Total | 50315
13
               Number of splices: Annotated (sjdb) | 47843
                          Number of splices: GT/AG | 49812
15
                          Number of splices: GC/AG | 65
16
                          Number of splices: AT/AC | 7
17
                  Number of splices: Non-canonical | 431
18
                         Mismatch rate per base, % | 0.36%
19
                            Deletion rate per base | 0.00%
20
                           Deletion average length | 1.37
21
                           Insertion rate per base | 0.00%
22
                          Insertion average length | 1.04
23
                                MULTI-MAPPING READS:
24
          Number of reads mapped to multiple loci | 0
25
                % of reads mapped to multiple loci | 0.00%
26
          Number of reads mapped to too many loci | 796537
27
                % of reads mapped to too many loci | 11.36%
28
                                      UNMAPPED READS:
29
         % of reads unmapped: too many mismatches | 0.00%
30
                    % of reads unmapped: too short | 2.90%
31
                        \% of reads unmapped: other | 0.04\%
32
```

The number of *uniquely mapped reads* is usually the most important number. If you are handling more than two BAM files, it will certainly be worthwhile to visualize the alignment rate for all files, e.g., using MultiQC or your own, customized routine in R (Figure 16).

In addition to the log files generated by the mapping program, there are numerous ways to obtain information about the numbers and kinds of reads stored in a BAM file, e.g., using samtools or RSeQC (see below). The simplest approach to finding out the number of alignments within a BAM file is to do a line count.

```
# pseudocode
2 $ samtools view Aligned.sortedByCoord.out.bam | wc -1
```

Note that if unmapped reads are present in the BAM file, these will also be counted, as well as multiple instances of the same read mapped to different locations if multi-mapped reads were kept. It is therefore more informative to run additional tools that will indicate the counts for specific FLAG values, too.

samtools flagstat This tool assesses the information from the FLAG field (see Section 3.3.2) and prints a summary report to the terminal.

```
$\times_{\text{mat/software/samtools}}^{\text{1}} = \text{1.5/samtools} & \text{flagstat} & \text{/zenodotus/abc/store/courses} \\
\text{/2016_rnaseq/additionalExamples/alignment/human_samples/UHR-RINO_Aligned.} \\
\text{sortedByCoord.out.bam} & \text{66889956} + 2593364 & \text{in total (QC-passed reads} + QC-failed reads)} \\
0 & + 0 & \text{secondary} & \text{0} + 0 & \text{supplementary} & \text{0} + 0 & \text{duplicates} & \text{66889956} + 2593364 & \text{mapped (100.00%} : 100.00%)} \\
0 & + 0 & \text{paired in sequencing} & \text{100.00%} \\
\end{array}
```

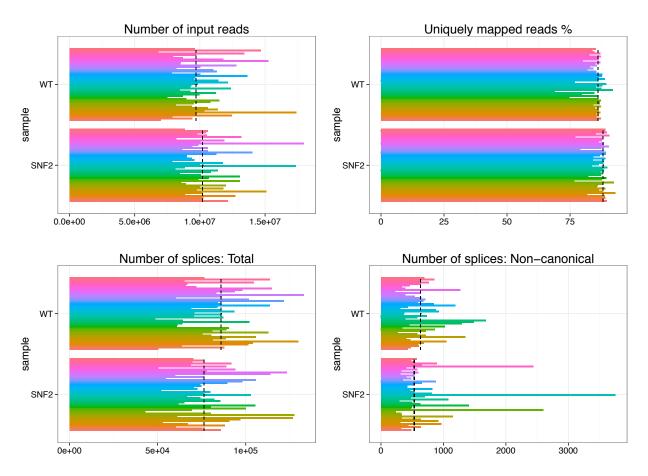


Figure 16: Graphical summary of STAR's log files for 96 samples. The individual colors represent the distinct samples, the dashed lines indicate the median values across all samples of the same condition (WT or SNF2). For details of the code underlying these figures, see https://github.com/friedue/course\_RNA-seq2015 rightarrow 01\_Alignment\_visualizeSTARresults.pdf.

```
8 0 + 0 read1
9 0 + 0 read2
10 0 + 0 properly paired (N/A : N/A)
11 0 + 0 with itself and mate mapped
12 0 + 0 singletons (N/A : N/A)
13 0 + 0 with mate mapped to a different chr
14 0 + 0 with mate mapped to a different chr (mapQ>=5)
```

RSeQC's bam\_stat.py RSeQC is a Python- and R-based suite of tools for various quality controls and visualizations, some of which are specific for RNA-seq experiments (Wang et al., 2012). See Table 11 for the list of all currently available scripts. Although RSeQC is one of the most popular tools for RNA-seq quality control, a recent publication revealed several bugs in the code of RSeQC (Hartley and Mullikin, 2015).

For basic alignment stats, one can use the bam\_stat.py script:

```
# RSeQC is based on Python; add the anaconda installation of Python to your
PATH

sexport PATH=/home/classadmin/software/anaconda2/bin/: $PATH

# now, all RSeQC scripts are immediately accessible and you can, for example,
run bam_stat.py

bam_stat.py -i WT_1_Aligned.sortedByCoord.out.bam
```

```
#All numbers are READ count
10
  Total records:
                                               6012470
  QC failed:
                                               0
13
  Optical/PCR duplicate:
                                               0
14
  Non primary hits
15
                                               0
  Unmapped reads:
16
  mapq < mapq_cut (non-unique):</pre>
  mapq >= mapq_cut (unique):
                                               6012470
19
  Read -1:
20
  Read -2:
                                               0
21
  Reads map to '+':
                                               3014735
22
  Reads map to '-':
                                               2997735
  Non-splice reads:
                                               5962195
  Splice reads:
                                               50275
  Reads mapped in proper pairs:
  Proper-paired reads map to different chrom:0
```

If you want to add the results of samtools flagstat and RSeQC's bam\_stat.py to a MultiQC report, capture the output that is normally printed to screen in reasonably named files.

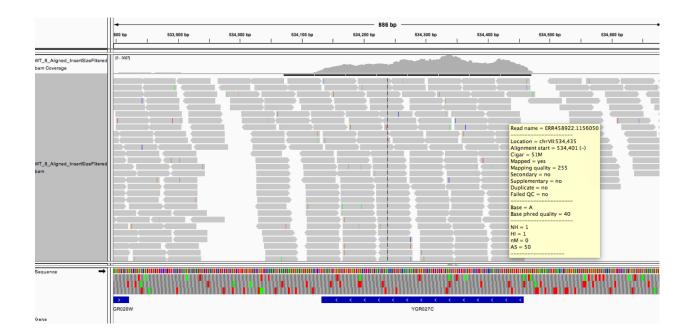
```
$\text{ bam_stat.py -i WT_1_Aligned.sortedByCoord.out.bam > bam_stat_WT_1.txt}$$ samtools flagstat WT_1_Aligned.sortedByCoord.out.bam > flagstat_WT_1.txt
```

Visualization of aligned reads It is always a good idea to visually check the results, i.e., ensure the reads align to the expected regions, preferably without too many mismatches. Here, Genome Browsers come in handy. Different research groups have released different Genome Browsers, and the most well-known browsers are probably those from Ensembl and UCSC. There are some reasons why one may not want to use these web-based options (e.g., HIPAA-protected data or lack of bandwidth to upload all data), and rather resort to stand-alone Genome Browsers (see https://en.wikipedia.org/wiki/Genome\_browser for an overview).

We are going to use the Broad Institute's Integrative Genomics Viewer (IGV) that can be downloaded after a quick registration with an academic email address from https://www.broadinstitute.org/software/igv/download. It requires an up-to-date Java installation.

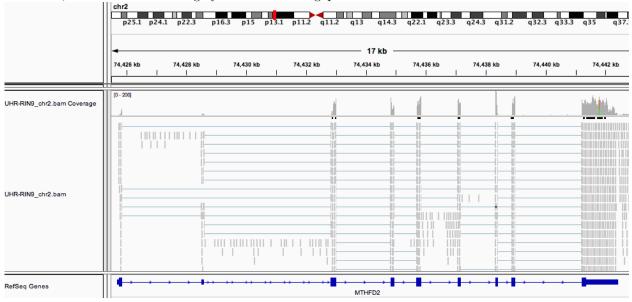
The IGV Genome Browser can display numerous file formats, e.g., indexed (!) BAM files with aligned reads and BED files with information about genomic loci (such as genes). The following IGV snapshot (in IGV, go to "File", then "Save image") shows the region surrounding an arbitrarily chosen yeast gene (blue box) and the reads aligned to it (grey arrows).

That means, the .bam file should have a bam.bai file with the same base name in the same folder.

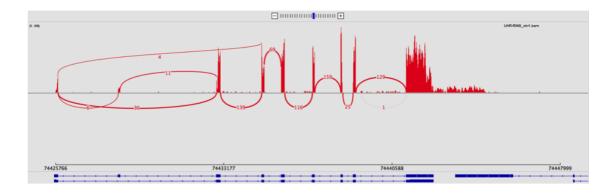


On top of the read alignment display, IGV also produces a coverage line that allows for quick identification of highly covered regions. Blue lines within the reads indicate insertions with respect to the reference genome, red lines indicate deletions. Since yeast genes are often intron-less, the reads can be aligned without gaps.

Human genes, however, tend to have multiple introns, which means that exon-exon-spanning reads must be aligned with often lengthy gaps within them (Figure 11). Examples of this can be seen in the following IGV screenshot, where the horizontal grey lines indicate a gap within a read:



If one is interested in the splice junctions of a particular gene, IGV can generate Sashimi plots (Katz et al., 2015): right-click on the track that contains the BAM file of interest and select "Sashimi plot". The result will look like this:



In the Sashimi plot, bar graphs indicate read coverage, arcs indicate splice junctions, and numbers represent the number of reads that contain the respective splice junction. Bear in mind that while the IGV-Sashimi plots are great because they allow you to interactively explore exon usage, relying on the simple read counts may be treacherous – simple differences in sequencing depth (i.e., the total number of reads per sample) can lead to perceived differences in read counts. If you want read counts normalized per million reads and adjusted for transcript length, you will have to resort to the standalone version of Sashimi (http://miso.readthedocs.io/en/fastmiso/sashimi.html).

#### 3.4.2 Bias identification

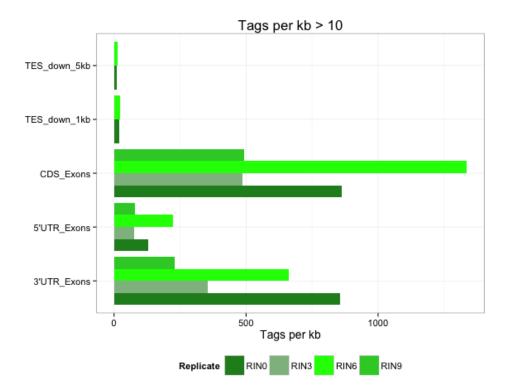
Typical biases of RNA-seq experiments include:

- Intron coverage: if many reads align to introns, this is indicative of incomplete poly(A) enrichment or abundant presence of immature transcripts.
- Intergenic reads: if a significant portion of reads is aligned outside of annotated gene sequences, this may suggest genomic DNA contamination (or abundant non-coding transcripts).
- 3' bias: over-representation of 3' portions of transcripts indicates RNA degradation.

**Read distribution** For mRNA-seq, one would expect the majority of the aligned reads to overlap with exons. This assumption can be tested using the read\_distribution.py script, which counts the numbers of reads overlapping with various gene- and transcript-associated genomic regions, such as exons and introns.

```
read_distribution.py -r ${REF_DIR}/sacCer3.bed \
                                                             # annotation file
      -i WT_1_Aligned.sortedByCoord.out.bam \ # runs only on single files
  Total Reads
                                  7501551
  Total Tags
                                  7565292
                                  6977808
  Total Assigned Tags
  _____
  Group
                                                                  Tags/Kb
                       Total_bases
                                            Tag_count
  CDS_Exons
                       8832031
                                            6970376
                                                                  789.22
 5'UTR_Exons
                       0
                                             0
                                                                  0.00
 3'UTR_Exons
                                             0
                                                                  0.00
11
  Introns
                       69259
                                             6353
                                                                  91.73
12
 TSS_up_1kb
                                             309
                                                                  0.13
                       2421198
13
  TSS_up_5kb
                                             309
                                                                  0.10
                       3225862
  TSS_up_10kb
                                             309
                                                                  0.09
                       3377251
15
  TES_down_1kb
                       2073978
                                             674
                                                                  0.32
16
17
  TES_down_5kb
                       3185496
                                             770
                                                                  0.24
  TES_down_10kb
                       3386705
                                             770
                                                                  0.23
18
```

To compare the read distribution values for different samples, it is helpful to turn the text-based output of read\_distribution.py into a bar graph:



The .R script and read\_distribution.py result files for this plot can be found at https://github.com/friedue/course\_RNA-seq2015. You will probably want to change a couple of details, e.g. including intron counts. You can also let MultiQC do the work if you capture the output of read\_distribution.py in a simple text file.

Gene body coverage To assess possible 3' or 5' biases, you can use RSeQC's geneBody\_coverage.py script. Given an annotation file with the transcript models of your choice, it will divide each transcript into 100 sections, count the reads overlapping with each section and generate two plots visualizing the general abundance of reads across all transcript bodies.

```
$ REF_DIR=~/mat/referenceGenomes/S_cerevisiae

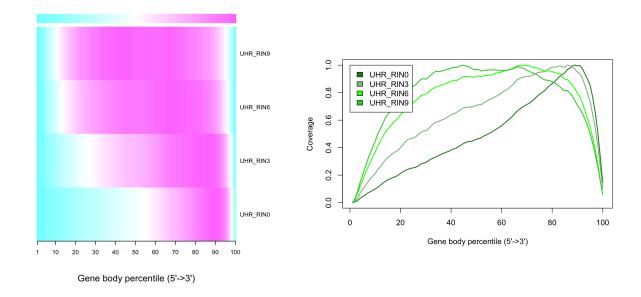
# Generate an index for the BAM file
$ samtools index WT_1_Aligned.sortedByCoord.out.bam

$ geneBody_coverage.py \
-i WT_1_Aligned.sortedByCoord.out.bam \ # aligned reads
-r ${REF_DIR}/sacCer3.bed \ # annotation file
-o geneBodyCoverage_WT_1 # output name

# if no plots are being generated automatically, the R script produced by the
python script can be run manually:

$ <PATH to R installation>/bin/R < geneBodyCoverage_WT_1.geneBodyCoverage.r \
--vanilla \ # tells R not to waste time trying to load previous sessions etc.
--slave # makes R run in a less verbose mode
```

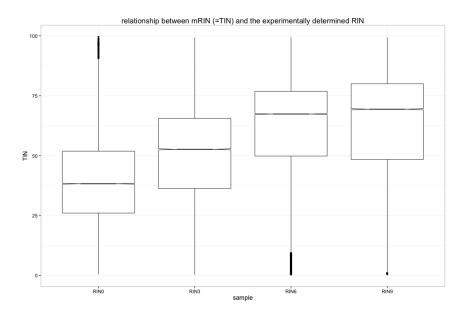
We ran the geneBody\_coverage.py script on four human samples of RNA-seq with varying degrees of RNA quality, ranging from RIN = 0 (degraded) to RIN = 9 (high quality RNA) (see Section 1.1.1 for details about RIN). The resulting plots show varying degrees of 3' bias where samples with degraded RNA (RIN 0) show a more prominent bias than high-quality RNA (RIN 9).



in silico mRIN calculation The RNA integrity number (RIN, see Section 1.1.1) that is calculated during library preparation to assess the RNA quality is rarely indicated in the public data repositories. It might thus be informative to determine a measure of mRNA degradation in silico. RSeQC's tin.py script does exactly that, using the deviation from an expected uniform read distribution across the gene body as a proxy (Feng et al., 2015).

```
tin.py -i WT_1_Aligned.sortedByCoord.out.bam -r ${REF_DIR}/sacCer3.bed
```

tin.py will generate a .xls file where the *in silico* mRIN is stored for each gene or transcript from the BED file. The second output file, \*summary.txt, gives a quick overview of the mean and median values across all genes for a given sample. Using human samples with known, experimentally determined RIN numbers, we can see that the *in silico* mRIN does correlate:



You can find the .R script and tin.py result files underlying these box plots in the following github repository: https://github.com/friedue/course\_RNA-seq2015.

#### 3.4.3 Quality control with QoRTs

As an alternative to RSeQC, the Quality of RNA-Seq Toolset (QoRTs) was developed, which is a comprehensive and multifunctional toolset that assists in quality control and data processing of high-throughput RNA sequencing data. It creates many of the same output and plots as RSeQC, but the authors claim it is more accurate (Hartley and Mullikin, 2015).

The following command runs the complete QoRTs QC analysis (refer to Table 12 to see all the individual functions and commands).

```
$ REF_DIR=~/mat/referenceGenomes/S_cerevisiae
 # to obtain the total number of raw reads you can make use of the calculator
     capabilities of bc
 # (the number is an optional parameter for QoRTs though)
 $ for FASTQ in ~/mat/precomputed/rawReads_yeast_Gierlinski/WT_1/ERR45849*gz; do
      zcat $FASTQ | wc -1; done | paste -sd+ | bc | awk '{print $1/4}'
 $ java -Xmx4g -jar ~/mat/software/qorts.jar QC \
    --singleEnded \setminus # QoRTs assumes the data is paired-end unless this flag is
       specified
   --seqReadCt 7014609 \ # total number of starting reads before mapping (see
       cmd above)
   10
   ${REF_DIR}/sacCer3.gtf \ # annotation file
11
   ./QoRTs_output/ # output folder
```

Note that by default, QoRTs assumes the data is paired end unless otherwise specified.

The run or exclude individual functions:

```
$ REF_DIR=~/mat/referenceGenomes/S_cerevisiae
  # to only run a single function
  $ java -Xmx4g -jar qorts.jar QC
    --singleEnded \
     --runFunctions writeGeneBody \setminus # run only the genebody coverage function
    --generatePdfReport WT_1_Aligned.sortedByCoord.out.bam \
    ${REF_DIR}/sacCer3.gtf \
    ./QoRTs_output/
10
  # to exclude a function
11
  $ java -Xmx4g -jar QoRTs.jar QC \
    --singleEnded
     --skipFunctions
                      JunctionCalcs \ # run every function except the
14
         JunctionCalcs function
     --generatePdfReport WT_1_Aligned.sortedByCoord.out.bam \
15
    ${REF_DIR}/sacCer3.gtf \
16
    ./QoRTs_output/
```

To include or exclude more than one function, use a comma-delimited list (without white spaces) of the respective functions.

An example QoRTs report can be found at http://chagall.med.cornell.edu/RNASEQcourse/.

#### 3.4.4 Summarizing the results of different QC tools with MultiQC

In Section 2.3, we already made use of MultiQC (Ewels et al., 2016) for collapsing the results of FastQC, which we ran on every technical replicate. You can also generate a comprehensive report of the post-alignment QC using MultiQC as the tool can recognize the results of almost all the tools we discussed in this chapter:

- General post-alignment QC
  - the log files produced by STAR

- samtools flagstat
- results of RSeQC's bam\_stat.py
- RNA-seq-specific QC
  - read distribution (e.g., using RSeQC or QoRTs)
  - gene body coverage (e.g., using RSeQC or QoRTs)
  - the splice junction information obtained with QoRTs

```
# collect all QC results of interest in one folder, e.g. QC_collection
  # subfolders can be be assigned for each sample, which will make the naming
      conventions used
  # by MultiQC easier
  # you can either copy or link the files that you need
  $ ls QC_collection/WT_1/
                                                   QC.NVC.minus.clipping.R1.txt.gz
  geneBodyCoverage_WT_1.geneBodyCoverage.r
  geneBodyCoverage_WT_1.geneBodyCoverage.txt
                                                   QC.NVC.raw.R1.txt.gz
                                                   QC.NVC.tail.clip.R1.txt.gz
  QC.b2nAZCenkhtb.log
  QC.biotypeCounts.txt.gz
                                                   QC.QORTS_COMPLETED_OK
  QC.chromCount.txt.gz
                                                   QC.QORTS_COMPLETED_WARN
  QC.cigarOpDistribution.byReadCycle.R1.txt.gz
                                                   QC.quals.r1.txt.gz
  QC.cigarOpLengths.byOp.R1.txt.gz
                                                   QC.r3z9iUXrtnHr.log
QC.exonCounts.formatted.for.DEXSeq.txt.gz
                                                   {\tt QC.spliceJunctionAndExonCounts.}
     forJunctionSeq.txt.gz
QC.fxNgbBmcKJnC.log
                                                   QC.spliceJunctionCounts.
     knownSplices.txt.gz
QC.gc.byRead.txt.gz
                                                   QC.spliceJunctionCounts.
     novelSplices.txt.gz
QC.gc.byRead.vsBaseCt.txt.gz
                                                   QC.summary.txt
QC.geneBodyCoverage.byExpr.avgPct.txt.gz
                                                   read_distribution.txt
18 QC.geneBodyCoverage.by.expression.level.txt.gz rseqc_bam_stat.txt
19 QC.geneBodyCoverage.DEBUG.intervals.txt.gz
                                                   samtools_flagstat.txt
  QC.geneBodyCoverage.genewise.txt.gz
                                                   WT_1Log.final.out
  QC.geneCounts.formatted.for.DESeq.txt.gz
                                                   WT_1Log.out
QC.geneCounts.txt.gz
                                                   WT_1Log.progress.out
QC.NVC.lead.clip.R1.txt.gz
24
25 # QoRTs results
26 $ ls QC_collection/WT_1/QC*
27 # STAR Log files
28 $ ls QC_collection/WT_1/*Log*out
29
  # the folder also contains (somewhat arbitrarily named) results of individual
30
      RSeQC scripts
  # including bam_stat.py, read_distribution.py, geneBody_coverage.py
31
32
  # run MultiQC
33
  $ cd QC_collection/
34
  $ ~/mat/software/anaconda2/bin/multiqc . \
35
      --dirs \ # use the names of the subdirectories
36
      --ignore ERR* \ # ignoring FastQC results in case they are there
37
      --filename multiQC_align
```

# 4 Read Quantification

As discussed in some detail by Van den Berge et al. (2019), there are two different ways of approaching the determination of individual transcripts' expression levels – one can either assign all the reads to a given gene (effectively ignoring the presence of individual isoforms), or one can try to infer the quantity of individual transcripts.

## 4.1 Gene-based read counting

To obtain gene-level quantifications, one can either directly count reads overlapping with gene loci or use transcript-level quantification (Section 4.2) followed by some way of aggregating the values per gene. In principle, the counting of reads overlapping with genomic features is a fairly simple task, but there are some details that need to be decided on depending on the nature of your experiment and the desired outcome (Figure 17).

The most popular tools for gene quantification are htseq-count and featureCounts. Both are part of larger tool packages (Anders et al., 2014; Liao et al., 2014). htseq-count offers three different modes to tune its behavior to define overlap instances (Figure 17). The recommended mode is union, which counts overlaps even if a read only shares parts of its sequence with a genomic feature and disregards reads that overlap more than one feature. This is similar to featureCounts that calls a hit if any overlap (1 bp or more) is found between the read and a feature and provides the option to either exclude multi-overlap reads or to count them for each feature that is overlapped.

When counting reads, make sure you know how the program handles the following:

- overlap size (full read vs. partial overlap);
- multi-mapping reads, i.e. reads with multiple hits in the genome;
- reads overlapping multiple genomic features of the same kind;
- reads overlapping introns.

|                    | union     | intersection<br>_strict | intersection<br>_nonempty |
|--------------------|-----------|-------------------------|---------------------------|
| read<br>gene_A     | gene_A    | gene_A                  | gene_A                    |
| read<br>gene_A     | gene_A    | no_feature              | gene_A                    |
| gene_A gene_A      | gene_A    | no_feature              | gene_A                    |
| gene_A gene_A      | gene_A    | gene_A                  | gene_A                    |
| read gene_A gene_B | gene_A    | gene_A                  | gene_A                    |
| gene_A gene_B      | ambiguous | gene_A                  | gene_A                    |
| gene_B             | ambiguous | ambiguous               | ambiguous                 |

Figure 17: The htseq-count script of the HTSeq suite offers three different modes to handle details of read-feature overlaps that are depicted here. The default of featureCounts is the behavior of the union option. Image taken from http://www-huber.embl.de/users/anders/HTSeq/doc/count.html.

In addition to the nature and lengths of the reads, gene expression quantification will be strongly affected

by the underlying gene models that are usually supplied to the quantification programs via GTF or BED(-like) files (see Section 3.1 for details on the file formats and annotations).

The following commands will count the number of reads overlapping with genes using featureCounts.

```
# count reads per gene

$ "/mat/software/subread-1.6.0-Linux-x86_64/bin/featureCounts \
    -a ${REF_DIR}/sacCer3.gtf \
    -o featureCounts_results.txt \
    alignment/*bam # use all BAM files in the folder "alignment"
```

The output of featureCounts consists of two files:

- 1. The one defined by the -o parameter (e.g., featureCounts\_results.txt) this one contains the actual read counts per gene (with gene ID, genomic coordinates of the gene including strand and length); the first line (starting with #) contains the command that was used to generate the file.
- 2. A file with the suffix .summary: This file gives a quick overview about how many reads could be assigned to genes and the reasons why some of the could not be assigned. This is a very useful file to double check the settings you've chosen for the counting.

featureCounts also allows to count reads overlapping with individual exons.

However, there are (at least) two caveats here:

- If an exon is part of more than one isoform in the annotation file, featureCounts will return the read counts for the same exon multiple times ( $n = number\ of\ transcripts\ with\ that\ exon$ ). Make sure you remove those multiple entries in the result file before the differential expression analysis, e.g., using a UNIX command\* or within R.
- If you want to assess differential expression of exons, it is highly recommended to create an annotation file where overlapping exons of different isoforms are split into artificially disjoint bins before applying featureCounts. See, for example, Anders et al. (2012). To create such a "flattened" annotation file from a GTF file (Section 3.1.1), you can use the dexseq\_prepare\_annotation.py script of the DEXSeq package (Anders et al., 2012) and the section "Preparing the annotation" of the corresponding vignette at bioconductor. Alternatively, you can use QoRTs to prepare the proper annotation, too<sup>†</sup>.

## 4.2 Isoform counting methods (transcript-level quantification)

The previously discussed methods count the number of fragments that can be assigned to a gene as a whole. The other school of thought suggests that quantifying reads that originated from transcripts should also be done on the transcript level<sup>‡</sup>. So far, most comparisons of methods point towards superior results of gene-based quantification and there is no standard technique for summarizing expression levels of genes with several isoforms (see, for example, Soneson et al. (2015), Dapas et al. (2016), Germain et al. (2016), and (Teng et al., 2016) for detailed comparisons of transcript-level quantifications; Van den Berge et al. (2019) offers a detailed discussion of some of the caveats of all of the approaches).

One trend seems to be clear though: the simple count-based approaches tend to underperform when they are used to determine transcript-level counts because they generally tend to ignore reads that overlap with more

 $<sup>^*\</sup>mathrm{e.g.},\,\mathtt{sort}\,\,\mathtt{-k2,2n}\,\,\mathtt{-k3,3n}\,\,\mathtt{featureCounts\_exons.txt}$  | uniq

 $<sup>^\</sup>dagger \mathrm{see}\ \mathtt{https://hpc.nih.gov/apps/QoRTs/example-walkthrough.pdf}\ \mathrm{for}\ \mathrm{details}$ 

<sup>&</sup>lt;sup>‡</sup>For arguments in favor of the transcript-focused school of thought, see, e.g., Trapnell et al. (2013) and Pimentel's talk.

than one feature (Soneson et al., 2015). While this is reasonable when the features are entire genes, this leads to an enormous number of discarded reads when quantifying different isoforms since multiple transcripts of the same gene naturally tend to overlap.

In order to quantify isoforms, you should perhaps look into different programs, e.g., Cufflinks (Trapnell et al., 2012), RSEM (Li and Dewey, 2011), eXpress (Roberts and Pachter, 2013) – these tools have been around the longest and are therefore most often cited. RSEM is the one that tends to perform best in most comparisons and the statistical interpretations and assumptions to handle transcript structures have been widely adopted. The main features of these tools are that they need to make assumptions about transcript structures and models and that the quantification is often done hand-in-hand with the alignment (or k-mer based mapping) of the reads. The values that are returned are typically not actual read counts because the majority of the short reads tend to be ambiguous, i.e., they match more than one known isoform. Therefore, transcript quantification will always have to rely on probabilistic assignments of values using a specific model with certain assumptions about how likely a given fragment will have originated from a specific isoform (Figure 18).

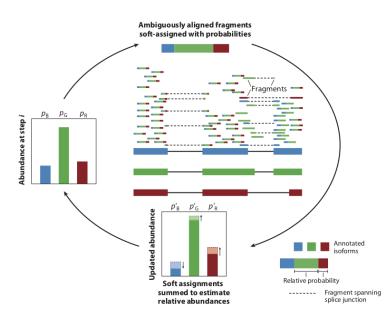


Figure 18: Illustration of the mapping and abundance estimation for the transcripts of a gene with three isoforms (blue (B), green (G), and red (R)). In this example, most reads have ambiguous origins and therefore need to be assigned probabilistically to the individual transcripts (relative probabilities for each read are shown by the magnitudes of the three colors). Some reads are consistent only with the B and G transcripts, and a few reads uniquely align to a single transcript (single color). Using an expectationmaximization algorithm, fragments are probabilistically assigned to transcripts given the current abundance estimates; then estimated abundances are updated by summarizing the (proportional) allocations over all fragments. The final transcript abundance estimates are determined by iterating the procedure until convergence. Figure and legend from Van den Berge et al. (2019).

As discussed in Section 3, new quantification algorithms for RNA-seq have been proposed<sup>§</sup> that are based on the idea that it may not be important to exactly know where within a transcript a certain read originated from. Instead, it may be enough to simply know which transcript the read represents. These algorithms therefore do not generate a BAM file because they do not worry about finding the best possible alignment. Instead, they yield a (probabilistic) measure of how many reads indicate the presence of each transcript. While these approaches are extremely fast compared to the usual alignment–counting routines that we have described at length, they seriously lack sensitivity for lowly expressed genes, small transcripts and transcripts where the splice variants are fairly similar to each other (Wu et al., 2018). They are also prone to spurious mapping for immature RNAs or transcript structures that aren't represented in the cDNA sequence pool used to generate their mapping index (Srivastava et al., 2019).

Instead of direct isoform quantification, you may be able to glean more accurate answers from alternative approaches, e.g., quantification of exons (Anders et al., 2012) or estimates of alternative splicing events such as exon skipping, intron retention etc. (e.g., MISO (Katz et al., 2010), rMATS (Shen et al., 2014)).

The main take home message here is once again: Know your data and your question, and research the individual strengths and pitfalls of the individual tools before deciding which one to use. For example, one major issue reported for Cufflinks is its inability to handle single-exon transcripts. Therefore, you should

<sup>§</sup>Sailfish (Patro et al., 2014), Salmon (Patro et al., 2017), kallisto (Bray et al., 2016)

The above shown featureCounts-based exon counting should not be used with DEXSeq unless exons with varying boundaries have been divided into disjoint bins (Anders et al., 2012; Teng et al., 2016; Soneson et al., 2016).

avoid using it if you are dealing with a fairly simple transcriptome (Kanitz et al., 2015). On the other hand, transcriptome reconstruction as attempted by Cufflinks generates large amounts of false positives (as well as false negatives) in very complicated transcriptomes, such as the human one while it seems to hit a better spot when applied to moderately complex transcriptomes such as the one of *C. elegans* (Jänes et al., 2015). In comparison, the novel lightweight quantification algorithms perform well for isoform quantification of known transcriptomes, but they are naturally very sensitive to incomplete or changing annotation. In addition, it is not entirely clear yet whether the resulting values can be used with the established algorithms to determine differential gene expression (Soneson et al., 2015; Pimentel et al., 2016).

The main caveats of assigning reads to transcripts are:

- inconsistent annotation of transcripts
- multiple isoforms of widely differing lengths
- anti-sense/overlapping transcripts of different genes

There is no really good solution yet! Be careful with your conclusions and if possible, limit your analyses to gene-based approaches.

# 5 Normalizing and Transforming Read Counts

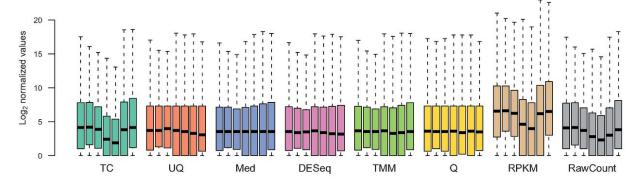
The numbers (or estimates) of reads overlapping with a given gene cannot be directly interpreted as absolute proxies of individual gene expression levels. The value that is obtained for a single gene in a single sample is based on the number of reads corresponding to that gene (or transcript), but as we discussed in previous chapters, there are numerous factors that influence the efficiency of amplification and sequencing of DNA fragments (e.g. GC-bias). For RNA-seq it is important to remember that, even given a uniform sampling of a diverse transcript pool (i.e. you succeeded in creating a random and comprehensive sampling of the original transcript universe), the number of sequenced reads mapped to a gene depends on:

- its own expression level (this is probably the only metric you're actually interested in!),
- its length (the longer a transcript, the more short fragments it will yield),
- the sequencing depth,
- the expression of all other genes within the sample.

In order to compare the gene expression between two conditions, we must therefore calculate the fraction of reads assigned to each gene relative to the total number of reads and with respect to the entire RNA repertoire, which may vary drastically from sample to sample. While the number of sequenced reads is known, the total RNA library and its complexity (i.e., which transcripts were captured) is unknown and variation between samples may be due to contamination as well as biological reasons. The purpose of normalization is to eliminate systematic effects that are not associated with the biological differences of interest so as not to skew exploratory analyses (Section 5.3) as well as the statistical test for differential gene expression (Chapter 6). See Table 13 for details on the most commonly used normalization methods that deal with these issues in different ways. However, the functions that will perform the statistical tests absolutely rely on being supplied the integer read counts (or their equivalents generated by the pseudo-alignment tools) as they will preform the normalization and transformation steps described in detail in the next sections under the hood.

# 5.1 Normalization for sequencing depth differences

As shown in Figure 19, the size factor method implemented by the R package DESeq2 leads to relatively similar read count distribution between different libraries. We will now use the output of featureCounts (= raw read counts), read them into R and normalize the read counts for sequencing depth differences with functions implemented in the package DESeq2.



**Figure 19:** Figure from Dillies et al. (2013) that shows the effects of different approaches to normalize for read count differences due to library sizes (TC, total count; UQ, upper quartile; Med, median; DESeq, size factor; TMM, Trimmed Mean of M-values; Q, quantile) or gene lengths (RPKM). See Tables 13 and 14 for details of the different normalization methods.



While the majority of normalization methods work well, **RPKM** and **total count** normalization should be **avoided** in the context of DE analysis, no matter how often you see them applied in published studies. RPKM, FPKM etc. are only needed if expression values need to be compared between different genes within the same sample for which the different gene lengths must be taken into consideration.

## 5.1.1 DESeq2's specialized data set object

DESeq2 stores virtually all information associated with your experiment in one specific R object of the class DESeqDataSet. The DESeqDataSet is a slightly modified version of the SummarizedExperiment class\*. The SummarizedExperiment class was developed to enable the storage of both numeric matrices (e.g. of raw read counts) together with plenty of metadata (e.g. conditions of every sample), which is a typically requirement of biological experiments. In short, these sophisticated objects can be thought of as containers where rows represent features of interest (e.g. genes, transcripts, exons) and columns represent samples. The data corresponding to features can be accessed with the rowData(SummExpObject) function, while the meta-data corresponding to the samples (columns) can be accessed via (colData(SummExpObject)). The actual count data (and all additional numeric values) is stored in the assay(SummExpObject) slot. More specifically:

- colData is a data.frame that can contain all the variables you know about your samples, such as the experimental condition, the type and date of sequencing and so on (see Section 1.4). Its row.names should correspond to the *unique* sample names.
- rowData is meant to keep all the information about the genes, e.g. gene ID's, their genomic ranges etc.
- assay should contain a matrix of the actual values associated with the genes and samples. For DESeqDataSets, there is an additional specialized function just meant to return the raw counts (counts(DESeqDataSet) will return the same as assay(DESeqDataSet, "counts")).

We will first read in the read counts, which will eventually be stored in the countData slot.

```
### Open an R console, e.g. using RStudio
  # code lines starting with `>` indicate the R console
  > library(magrittr) # this will allow us to string commands together in a UNIX-
     pipe-like fashion using %>%
  # get the table of read counts by indicating the path to the file
  > read.counts <- read.table("~/Downloads/featureCounts_result.txt", header =
      TRUE)
  # One of the requirements of the assay() slots is that the row.names
  # correspond to the gene IDs and the col.names to the sample names
  > row.names(readcounts) <- readcounts$Geneid
10
11
  # in addition, we need to exclude all columns that do not contain read counts
12
  > readcounts <- readcounts[ , -c(1:6)]</pre>
13
  # give meaningful sample names - this can be achieved via numerous approaches
  # the one shown here is the least generic and most error-prone one!
  > orig_names <- names(readcounts)</pre>
17
  > names(readcounts) <- c("SNF2_1", "SNF2_2", "SNF2_3", "SNF2_4", "SNF2_5", "WT_</pre>
      1", "WT_2", "WT_3", "WT_4", "WT_5")
  # alternative way to assign the sample names, which reduces the
  # potential for typos as well as for the wrong order:
21
  > names(readcounts) <- gsub(".*(WT|SNF2)(_[0-9]+).*", "\\1\\2", orig_names)
22
23
  # ALWAYS CHECK YOUR DATA AFTER YOU MANIPULATED IT!
24
  > str(readcounts)
_{26} > head(readcounts, n = 3)
```

 $<sup>^*</sup>See$  http://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html for details.

```
SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2 WT_3 WT_4 WT_5
27
  YAL012W
               7347
                       7170
                               7643
                                       8111
                                              5943 4309 3769 3034 5601 4164
28
  YAL069W
                  0
                          0
                                  0
                                          0
                                                  0
                                                       0
                                                             0
                                                                  0
                                                                        0
                                                                              0
29
                   0
                          0
                                  0
                                          0
                                                       0
                                                             0
                                                                   0
                                                                        0
                                                                              0
  YALO68W-A
                                                  0
```

Now that we have the read counts, we also need some information about the samples, which will be stored in colData. As described above, this should be a data.frame, where the rows match the column names of the count data we just generated. In addition, each row should contain information about the condition of each sample (here: WT and SNF2 [knock-out]).

```
# make a data.frame with meta-data where row.names should match the individual
  # sample names
  > sample_info <- data.frame(condition = gsub("_[0-9]+", "", names(readcounts)),
                               row.names = names(readcounts) )
  > sample_info
         condition
  SNF2_1
              SNF2
  SNF2_2
              SNF2
  SNF2_3
              SNF2
  SNF2_4
              SNF2
  SNF2_5
              SNF2
11
12
  WT_1
                WT
13
  WT_2
                 WΤ
 WT_3
                 WΤ
14
15 WT_4
                 WT
16 WT_5
                 WT
17
  # IF NEEDED, install DESeq2, which is not available via install.packages(),
 # but through bioconductor
20 > BiocManager::install("DESeq2")
21 > library(DESeq2)
22
  # generate the DESeqDataSet
23
  > DESeq.ds <- DESeqDataSetFromMatrix(countData = readcounts,
25
                                  colData = sample_info,
                                  design = ~ condition)
26
27
  # you can check the result using the accessors described above:
28
 > colData(DESeq.ds) %>% head
30 > assay(DESeq.ds, "counts") %>% head
 > rowData(DESeq.ds) %>% head
32
  # test what counts() returns
33
  > counts(DESeq.ds) %>% str
34
35
  # remove genes without any counts
36
  > DESeq.ds <- DESeq.ds[ rowSums(counts(DESeq.ds)) > 0, ]
37
38
  # investigate different library sizes
39
  > colSums(counts(DESeq.ds)) # should be the same as colSums(readcounts)
```

DESeq2's default method to normalize read counts to account for differences in sequencing depths is implemented in estimateSizeFactors() (see Table 13).

```
# calculate the size factor and add it to the data set
> DESeq.ds <- estimateSizeFactors(DESeq.ds)
> sizeFactors(DESeq.ds)

# if you check colData() again, you see that this now contains the sizeFactors
> colData(DESeq.ds)
```

```
# counts() allows you to immediately retrieve the _normalized_ read counts
9 > counts.sf_normalized <- counts(DESeq.ds, normalized = TRUE)</pre>
```

The procedure involves three steps (Anders and Huber, 2010):

- 1. for every gene (= row), determine the geometric mean of its read counts across all samples (yielding the "pseudo-reference", i.e. one value per gene);
- 2. divide every value of the count matrix by the corresponding pseudo-reference value;
- 3. for every sample (= column), determine the median of these ratios. This is the size factor.

If you want to see the source code for how exactly DESeq2 calculates the size factors, you can use the following command: getMethod("estimateSizeFactors", "DESeqDataSet"). Alternatively, you can calculate the size factors yourself:

```
## define a function to calculate the geometric mean
  gm_mean <- function(x, na.rm=TRUE){</pre>
 exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
 }
  ## calculate the geometric mean for each gene using that function
  ## note the use of apply(), which we instruct to apply the gm_mean()
  ## function per row (this is what the second parameter, 1, indicates)
  pseudo_refs <- counts(DESeq.ds) %>% apply(., 1, gm_mean)
10
  ## divide each value by its corresponding pseudo-reference value
11
  pseudo_ref_ratios <- counts(DESeq.ds) %>%
                         apply(., 2, function(cts){ cts/pseudo_refs})
14
  ## if you want to see what that means at the single-gene level,
15
  ## compare the result of this:
16
  counts(DESeq.ds)[1,]/pseudo_refs[1]
17
 ## with
 pseudo_ref_ratios[1,]
  ## determine the median value per sample to get the size factor
  apply(pseudo_ref_ratios, 2, median)
```

The result of the last line of code should be equivalent to the values returned by sizeFactors(DESeq.ds) after running estimateSizeFactors(DESeq.ds).



- 1. Name two technical reasons why the read count for the same gene may vary between two samples although it is not differentially expressed.
- 2. Name two technical reasons why the read counts of two genes may vary within the same sample although they are expressed at the same level.

## 5.2 Transformation of sequencing-depth-normalized read counts

Due to the relatively large dynamic range of expression values that RNA-seq data can cover, many downstream analyses (including clustering) work much better if the read counts are transformed to the log scale following normalization. While you will occasionally see  $log_{10}$  transformed read counts,  $log_2$  is more commonly used because it is easier to think about doubled values rather than powers of 10. The transformation should be done in addition to sequencing depth normalization.

### 5.2.1 $Log_2$ transformation of read counts

```
# transform size-factor normalized read counts to log2 scale using a
pseudocount of 1
> log.norm.counts <- log2(counts.sf_normalized + 1)
```

You can see how the  $log_2$  transformation makes even simple graphs more easily interpretable by generating boxplots of read counts similar to the ones in Figure 19:

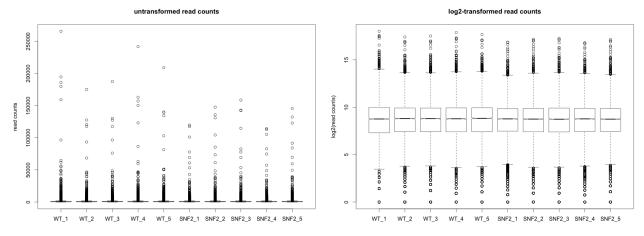


Figure 20: Comparison of the read distribution plots for untransformed and  $log_2$ -transformed values.

### 5.2.2 Visually exploring normalized read counts

To get an impression of how similar read counts are between replicates, it is often insightful to simply plot the counts in a pairwise manner (Figure 21, upper panels). This can be achieved with the basic, but versatile plot() function:

```
plot(log.norm.counts[,1:2], cex=.1, main = "Normalized log2(read counts)")
```

Many statistical tests and analyses assume that data is homoskedastic, i.e. that all variables have similar variance. However, data with large differences among the sizes of the individual observations often shows heteroskedastic behavior. One way to visually check for heteroskedasticity is to plot the mean vs. the standard deviation (Figure 21, lower panel).

```
ylab("standard deviation")
```

The y-axis shows the variance of the read counts across all samples. Some variability is, in fact, expected, but the clear hump on the left-hand side indicates that for read counts  $< 32 \ (2^5 = 32)$ , the variance is higher than for those with greater read counts. That means that there is a dependence of the variance on the mean, which violates the assumption of homoskedasticity.

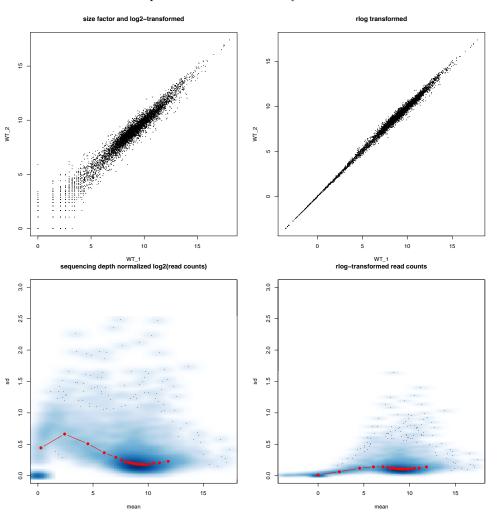


Figure 21: Comparison of  $log_2$ - and rlog-transformed read counts. The upper panel shows simple pairwise comparisons of replicate samples; the lower panel contains mean-sd-plots based on all samples of the experiment.

### 5.2.3 Transformation of read counts including variance shrinkage

To reduce the amount of heteroskedasticity, DESeq2 and also edgeR offer several means to shrink the variance of low read counts. They do this by using the dispersion-mean trend that can be observed for the entire data set as a reference. Consequently, genes with low and highly variable read counts will be assigned more homogeneous read count estimates so that their variance resembles the variance observed for the majority of the genes (which hopefully have a more stable variance).

DESeq2's rlog() function returns values that are both normalized for sequencing depth and transformed to the  $log_2$  scale where the values are adjusted to fit the experiment-wide trend of the variance-mean relationship.

```
# obtain regularized log-transformed values
> DESeq.rlog <- rlog(DESeq.ds, blind = TRUE)
> rlog.norm.counts <- assay(DESeq.rlog)

# mean-sd plot for rlog-transformed data
> library(vsn)
> library(ggplot2)
> msd_plot <- meanSdPlot(rlog.norm.counts,</pre>
```

```
ranks=FALSE, # show the data on the original scale
plot = FALSE)

msd_plot$gg +
ggtitle("rlog-transformed read counts") +
ylab("standard deviation")
```

The rlog() function's blind parameter should be set to FALSE if the different conditions lead to strong differences in a large proportion of the genes. If rlog() is applied without incorporating the knowledge of the experimental design (blind = TRUE, the default setting), the dispersion will be greatly overestimated in such cases.

## 5.3 Exploring global read count patterns

An important step before diving into the identification of differentially expressed genes is to check whether expectations about basic global patterns are met. For example, technical and biological replicates should show similar expression patterns while the expression patterns of, say, two experimental conditions should be more dissimilar. There are multiple ways to assess the similarity of expression patterns, we will cover the three that are used most often for RNA-seq data.

#### 5.3.1 Pairwise correlation

The Pearson correlation coefficient, r, is a measure of the strength of the linear relationship between two variables and is often used to assess the similarity of RNA-seq samples in a pair-wise fashion. It is defined as the covariance of two variables divided by the product of their standard deviation. The ENCODE consortium recommends that "for messenger RNA, (...) biological replicates [should] display >0.9 correlation for transcripts/features".

In R, pairwise correlations can be calculated with the cor() function.

## 5.3.2 Hierarchical clustering

To determine whether the different sample types can be separated in an unsupervised fashion (i.e., samples of different conditions are more dissimilar to each other than replicates within the same condition), hierarchical clustering can be used. Hierarchical clustering is typically based on pairwise comparisons of individual samples, which are grouped into "neighborhoods" of similar samples. The basis of hierarchical clustering is therefore a matrix of similarity metrics (which is different from the actual gene expression values!).

Hierarchical clustering requires two decisions:

- 1. How should the (dis)similarity between pairs be calculated?
- 2. How should the (dis)similarity be used for the clustering?

A common way to assess the (dis)similarity is the Pearson correlation coefficient, r, that we just described. The corresponding distance measure is d = 1 - r. Alternatively, the Euclidean distance is often used as a measure of distance between two vectors of read counts. The Euclidean distance is strongly influenced by differences of the scale: if two samples show large differences in sequencing depth, this will affect the Euclidean distance more than the distance based on the Pearson correlation coefficient.

Just like there are numerous ways to calculate the distance, there are multiple options to decide on how the distances should be used to define clusters of samples. The most popular choices for the *linkage function* are

- complete: intercluster distance  $\equiv$  largest distance between any 2 members of either cluster
- average: intercluster distance  $\equiv$  average distance between any 2 members
- single: intercluster distance  $\equiv$  shortest distance between any 2 members

Avoid "single" linkage on gene expression data; "complete" and "average" linkage tend to be much more appropriate, with "complete" linkage often outperforming "average" (Gibbons and Roth, 2002).

**Table 6:** Comparison of unsupervised classification and clustering techniques. The following table was adapted from Karimpour-Fard et al. (2015); see that publication for more details on additional (supervised) classification methods such as support vector machines. Classifiers try to reduce the number of features that represent the most prevalent patterns within the data. Clustering techniques aim to group similar features.

|                | Method                 | What does it do?                                                                                                                   | How?                                                                                                                      | Strengths                                                                                                                                           | Weaknesses                                                                                                                                    | Sample size                                                                         |
|----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Classification | PCA                    | Separates features into groups based on commonality and reports the weight of each component's contribution to the separation      | Orthogonal transformation; transfers<br>a set of correlated<br>variables into a new<br>set of uncorrelated<br>variables   | Unsupervised,<br>nonparametric,<br>useful for reducing<br>dimensions before<br>using supervision                                                    | Number of features<br>must exceed num-<br>ber of treatment<br>groups                                                                          | Number of features must exceed number of treatment groups                           |
| D              | ICA                    | Separates features into groups by eliminating correlation and reports the weight of each components contribution to the separation | Nonlinear, non-<br>orthogonal transfor-<br>mation; standard-<br>izes each variable to<br>a unit variance and<br>zero mean | Works well when<br>other approaches<br>do not because<br>data are not nor-<br>mally distributed                                                     | Features are assumed to be independent when they actually may be dependent                                                                    | Unlimited<br>sample size;<br>data non-<br>normally<br>distributed                   |
| Clustering     | K-means                | Separates features<br>into clusters of<br>similar expression<br>patterns                                                           | Compares and groups magnitudes of changes in the means into $K$ clusters where $K$ is defined by the user                 | Easily visualized and intuitive; greatly reduces complexity; performs well when distance information between data points is important to clustering | Sensitive to initial conditions and user-specified number of clusters $(K)$                                                                   | Best with<br>a limited<br>dataset, i.e.,<br>ca. 20 to 300<br>features               |
|                | Hier-<br>archi-<br>cal | Clusters treatment<br>groups, features,<br>or samples into a<br>dendrogram                                                         | Compares all samples using either agglomerative or divisive algorithms with distance and linkage functions                | Unsupervised; easily visualized and intuitive                                                                                                       | Does not provide<br>feature contribu-<br>tions; not iterative,<br>thus sensitive to<br>cluster distance<br>measures and noise<br>and outliers | Best with<br>a limited<br>dataset, i.e.,<br>ca. 20 to 300<br>features or<br>samples |

The result of hierarchical clustering is a dendrogram (Figure 22); clusters are obtained by cutting the dendrogram at a level where the jump between two consecutive nodes is large: connected components then form individual clusters. It must be noted that there is no consensus on how to decide the "correct" number of clusters. The cluster structure recovered by the in silico clustering does not necessarily represent the "true" structure of the data<sup>†</sup>. As Yona et al. (2009) point out: "The application of any clustering algorithm will result in some partitioning of the data into groups, (...) the choice of the clustering algorithm may greatly affect the outcome (...) and their output may vary a great deal, depending on the starting point." While statistical approaches to validating cluster choices exist<sup>‡</sup>, for most applications in RNA-seq analyses it will suffice to judge the clustering results based on your prior knowledge of the experiment. In addition, the structure of the dendrogram should yield compact, well-defined clusters.

A dendrogram can be generated in R using the functions cor(), as.dist(), and hclust():

```
# cor() calculates the correlation between columns of a matrix
> distance.m_rlog <- as.dist(1 - cor(rlog.norm.counts, method = "pearson"))

# plot() can directly interpret the output of hclust()
> plot( hclust(distance.m_rlog),
```

<sup>&</sup>lt;sup>†</sup>The true structure of the data will, in turn, be affected by and reflect the effect of random noise, technical artefacts and biological variability.

<sup>&</sup>lt;sup>‡</sup>See, for example, the vignette to the R package clValid: https://cran.r-project.org/web/packages/clValid/vignettes/clValid.pdf.

```
labels = colnames(rlog.norm.counts),
main = "rlog transformed read counts\ndistance: Pearson correlation")
```

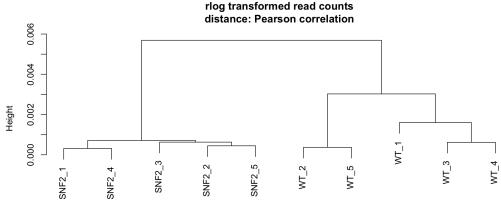


Figure 22: Dendrogram of rlog-transformed read counts for ten different samples, using the "complete" linkage function. The two conditions, SNF2 and WT, are well separated.



- 1. Which linkage method was used for the dendrogram generated with the code shown above?
- 2. Can you make a dendrogram with Euclidean distance and linkage method "average"?

## 5.3.3 Principal Components Analysis (PCA)

A complementary approach to determine whether samples display greater variability between experimental conditions than between replicates of the same treatment is principal components analysis. It is a typical example of dimensionality reduction approaches that have become very popular in the field of machine learning. The goal is to find *groups* of features (e.g., genes) that have something in common (e.g., certain patterns of expression across different samples), so that the information from thousands of features is captured and represented by a reduced number of groups.

The result of PCA are principal components that represent the directions along which the variation in the original multi-dimensional data matrix is maximal. This way a few dimensions (components) can be used to represent the information from thousands of mRNAs. This allows us to, for example, visually represent the variation of the gene expression for different samples by using just the top two PCs<sup>§</sup> as coordinates in a simple xy plot (instead of plotting thousands of genes per sample). Most commonly, the two principal components explaining the majority of the variability are displayed. It is also useful to identify unexpected patterns, such as batch effects or outliers. But keep in mind that PCA is not designed to discover unknown groupings; it is up to the researcher to actually identify the experimental or technical reason underlying the principal components. For more technical details and PCA alternatives depending on the types of data that you have, see, for example, Meng et al. (2016).

PCA can be performed in base R using the function prcomp().

DESeq2 also offers a convenience function based on ggplot2 to do PCA directly on a DESeqDataSet:

<sup>§</sup>Per definition, PCs are ordered by reducing variability, i.e. the first PC will always be the component that captures the most variability.

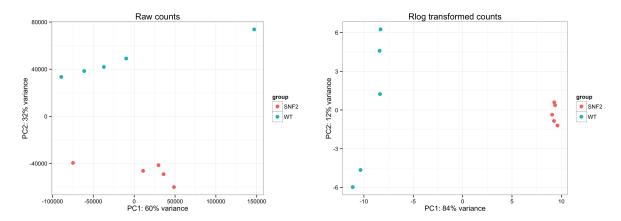


Figure 23: PCA on raw counts and rlog-transformed read counts with the DESEq2 convenience function plotPCA(). As indicated by the labels of the axes, the different sample types explain a greater fraction of the variance for rlog-transformed values than for the raw counts.

```
# plot cosmetics
s > P <- P + theme_bw() + ggtitle("Rlog transformed counts")
print(P)</pre>
```



PCA and clustering should be done on normalized and preferably transformed read counts, so that the high variability of low read counts does not occlude potentially informative data trends.

# 6 Differential Gene Expression Analysis (DGE)

In addition to performing exploratory analyses based on normalized measures of expression levels (Section 5), numerous efforts have been dedicated to optimize statistical tests to decide whether a (single!) given gene's expression varies between two (or more) conditions based on the information gleaned from as little as two or three replicates per condition. The two basic tasks of all DGE tools are:

- 1. Estimate the *magnitude* of differential expression between two or more conditions based on read counts from replicated samples, i.e., calculate the fold change of read counts, taking into account the differences in sequencing depth and variability (Section 5).
- 2. Estimate the *significance* of the difference and correct for multiple testing.

The best performing tools tend to be edgeR (Robinson et al., 2010), DESeq/DESeq2 (Anders and Huber, 2010; Love et al., 2014), and limma-voom (Ritchie et al., 2015) (see Rapaport et al. (2013); Soneson and Delorenzi (2013); Schurch et al. (2015) for reviews of DGE tools). DESeq and limma-voom tend to be more conservative than edgeR (better control of false positives), but edgeR is recommended for experiments with fewer than 12 replicates (Schurch et al., 2015). These tools are all based on the R language and make heavy use of numerous statistical methods that have been developed and implemented over the past two decades to improve the power to detect robust changes based on extremely small numbers of replicates (Section ??) and to help deal with the quirks of integer count data. These tools basically follow the same approach, i.e., they estimate the gene expression difference for a given gene using regression-based models (and taking the factors discussed in Section 5 into account), followed by a statistical test based on the null hypothesis that the difference is close to zero, which would mean that there is no difference in the gene expression values that could be explained by the conditions. Table 7 has a summary of the key properties of the most popular DGE tools; the next two sections will explain some more details of the two key steps of the DGE analyses.

**Table 7:** Comparison of programs for differential gene expression identification. Information shown here is based on the user guides of DESeq2, edgeR, limmaVoom and Rapaport et al. (2013), Seyednasrollah et al. (2015), and Schurch et al. (2015). LRT stands for log-likelihood ratio test.

| Feature                                      | DESeq2                                                                                          | edgeR                                                                        | limmaVoom                                                                  | Cuffdiff                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|
| Seq. depth normalization                     | Sample-wise size factor                                                                         | Gene-wise trimmed<br>median of means<br>(TMM)                                | Gene-wise trimmed<br>median of means<br>(TMM)                              | FPKM-like or<br>DESeq-like |
| Dispersion estimate                          | Cox-Reid approximate conditional inference with focus on maximum individual dispersion estimate | Cox-Reid approximate conditional inference moderated towards the <i>mean</i> | squeezes gene-wise<br>residual variances<br>towards the global<br>variance |                            |
| Assumed distribution                         | Neg. binomial                                                                                   | Neg. binomial                                                                | log-normal                                                                 | Neg. binomial              |
| Test for DE                                  | Wald test (2 factors);<br>LRT for multiple<br>factors                                           | exact test for 2<br>factors; LRT for<br>multiple factors                     | t-test                                                                     | t-test                     |
| False positives                              | Low                                                                                             | Low                                                                          | Low                                                                        | High                       |
| Detection of differential isoforms           | No                                                                                              | No                                                                           | No                                                                         | Yes                        |
| Support for<br>multi-factored<br>experiments | Yes                                                                                             | Yes                                                                          | Yes                                                                        | No                         |
| Runtime (3-5 replicates)                     | Seconds to minutes                                                                              | Seconds to minutes                                                           | Seconds to minutes                                                         | Hours                      |



All statistical methods developed for read counts rely on approximations of various kinds, so that assumptions must be made about the data properties. edgeR and DESeq, for example, assume that the majority of the transcriptome is unchanged between the two conditions. If this assumption is not met by the data, both  $log_2$  fold change and the significance indicators are most likely incorrect!

## 6.1 Estimating the difference between read counts for a given gene

To determine whether the read count differences between different conditions for a given gene are greater than expected by chance, DGE tools must find a way to estimate that difference using the information from the replicates of each condition. edgeR (Robinson et al., 2010), DESeq/DESeq2 (Anders and Huber, 2010; Love et al., 2014), and limma-voom (Ritchie et al., 2015) all use regression models that are applied to every single gene. Linear regression models usually take the following typical form:  $Y = b_0 + b_1 * x + e$  (Figure 24).

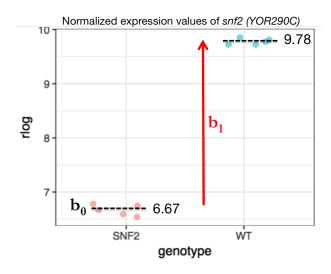


Figure 24: For the most basic comparison of two conditions, all (normalized) expression values, Y, can be described with the help of a regression model where  $b_0$  represents the average value of the baseline group and  $b_1$  the difference between baseline and non-reference group:  $Y = b_0 + b_1 * x + e$ . x is a discrete parameter, which is set to 0 for expression values measured in the baseline condition (here: SNF2) and set to 1 for the non-reference group (here: WT).

Here, Y will entail all read counts (from all conditions) for a given gene.  $b_0$  is called the *intercept*; x is the condition (for RNA-seq, this is very often a discrete factor, e.g., "WT" or "mutant", or, in mathematical terms, 0 or 1), e is a term capturing the error or uncertainty, and  $b_1$  is the coefficient that captures the difference between the samples of different conditions\*.

The very simple model shown above could be fitted in R using the function  $lm(rlog.norm\sim genotype)^{\dagger}$ , which will return estimates for both  $b_0$  and  $b_1$ , so that the average expression values of the baseline genotype (e.g., WT = 0) would correspond to  $Y = b_0 + b_1 * 0 + e$ . This is equivalent to  $Y = b_0$  (assuming that e is very small), thereby demonstrating why the intercept  $(b_0)$  can be interpreted as the average of our baseline group.  $b_1$ , on the other hand, will be the coefficient whose closeness to zero will be evaluated during the statistical testing step.

Instead of using a *linear* model, DESeq2 and edgeR rely on a *negative binomial* model to fit the observed read counts to arrive at the estimate for the difference. Originally, read counts had been modeled using the *Poisson* distribution because:

- $\bullet$  individual reads can be interpreted as binary data (Bernoulli trials): they either originate from gene i or not.
- we are trying to model the discrete probability distribution of the number of successes (success = read is present in the sequenced library).
- the pool of possible reads that could be present is large, while the proportion of reads belonging to gene *i* is quite small.

The convenient feature of a Poisson distribution is that variance = mean. Thus, if the RNA-seq experiment gives us a precise estimate of the mean read counts per condition, we implicitly know what kind of variance to expect for read counts that are not truly changing between two conditions. This, in turn, then allows us to identify those genes that show greater differences between the two conditions than expected by chance.

Unfortunately, only read counts of the same library preparation (= technical replicates) can be well approximated by the Poisson distribution, biological replicates have been shown to display greater variance

<sup>\*</sup>You may have encountered linear models in different contexts: they are usually used to predict unknown values of Y, i.e., one often wants to find a function that returns Y at any given point along a certain trajectory captured by the model. In the case of RNA-seq, we are actually more interested in the values of the *coefficients*, more precisely, the parameter (here:  $b_0$ ) that explains the difference between distinct groups of expression values of x.

<sup>†</sup>In plain English: rlog-normalized expression values for gene X modeled based on the genotype (Figure 24).

(noise). This overdispersion can be captured with the negative binomial distribution, which is a more general form of the Poisson distribution where the variance is allowed to exceed the mean. This means that we now need to estimate two parameters from the read counts: the mean as well as the dispersion. The precision of these estimates strongly depends on the number (and variation) of replicates – the more replicates, the better the grasp on the underlying mean expression values of unchanged genes and the variance that is due to biological variation rather than the experimental treatment. For most RNA-seq experiments, only two to three replicates are available, which is not enough for reliable mean and variance estimates. Some tools therefore compensate for the lack of replication by borrowing information across genes with similar expression values and shrink a given gene's variance towards the regressed values. These fitted values of the mean and dispersion are then used instead of the raw estimates to test for differential gene expression.

# 6.2 Testing the null hypothesis

The null hypothesis is that there is no systematic difference between the average read count values of the different conditions for a given gene. Which test is used to assign a p-value again depends on the tool (Table 7), but generally you can think of them as some variation of the well-known t-test (How dissimilar are the means of two populations?) or ANOVAs (How well does a reduced model capture the data when compared to the full model with all coefficients?).

Once you've obtained a list of p-values for all the genes of your data set, it is important to realize that you just performed the same type of test for thousands and thousands of genes. That means, that even if you decide to focus on genes with a p-value smaller than 0.05, if you've looked at 10,000 genes your final list may contain 0.05\*10,000 = 500 false positive hits. To guard yourself against this, all the tools will offer some sort of correction for the multiple hypotheses you tested, e.g. in the form of the Benjamini-Hochberg formula. You should definitely rely on the adjusted p-values rather than the original ones to zoom into possible candidates for downstream analyses and follow-up studies.

# 6.3 Running DGE analysis tools

#### 6.3.1 DESeq2 workflow

For our example data set, we would like to compare the effect of the *snf2* mutants versus the wildtype samples, with the wildtype values used as the denominator for the fold change calculation.

```
# DESeq2 uses the levels of the condition to determine the order of the comparison
> str(colData(DESeq.ds)$condition)

# set WT as the first-level-factor
> colData(DESeq.ds)$condition <- relevel(colData(DESeq.ds)$condition, "WT")
```

Now, running the DGE analysis is very simple:

```
DESeq.ds <- DESeq(DESeq.ds)
```

The DESeq() function is basically a wrapper around the following three individual functions:

```
> DESeq.ds <- estimateSizeFactors(DESeq.ds) # sequencing depth normalization between the samples
> DESeq.ds <- estimateDispersions(DESeq.ds) # gene-wise dispersion estimates across all samples
> DESeq.ds <- nbinomWaldTest(DESeq.ds) # this fits a negative binomial GLM and applies Wald statistics to each gene
```

Note that the input for the DGE analysis are the *raw* read counts (untransformed, not normalized for sequencing depth); while the tools will perform normalizations and transformations under the hood, supplying anything but raw read counts to either DESeq2 or edgeR will result in nonsensical results.

The results() function lets you extract the base means across samples, moderated  $log_2$  fold changes, standard errors, test statistics etc. for every gene.

```
DGE.results <- results(DESeq.ds, independentFiltering = TRUE, alpha = 0.05)

summary(DGE.results)

the DESeqResult object can basically be handled like a data.frame
head(DGE.results)

table(DGE.results$padj < 0.05)

rownames(subset(DGE.results, padj < 0.05))
```

## 6.3.2 Exploratory plots following DGE analysis

**Histograms** Histograms are a simple and fast way of getting a feeling for how frequently certain values are present in a data set. A common example is a histogram of p-values (Figure 25).

```
bist(DGE.results$pvalue,
col = "grey", border = "white", xlab = "", ylab = "",
main = "frequencies of p-values")
```

MA plot MA plots were originally developed for visualizing cDNA microarray results, but they are also useful for RNA-seq analyses. The MA plot provides a global view of the relationship between the expression change between conditions (log ratios, M), the average expression strength of the genes (average mean, A) and the ability of the algorithm to detect differential gene expression: genes that pass the significance threshold (adjusted p-value <0.05) are colored in red (Figure 25).

```
plotMA(DGE.results, alpha = 0.05, main = "WT vs. SNF2 mutants",
ylim = c(-4,4))
```

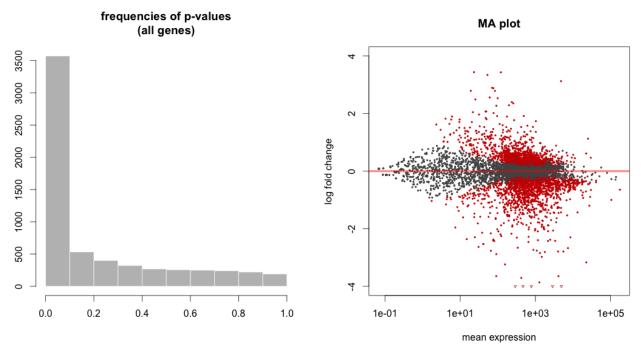


Figure 25: Left: Histogram of p-values for all genes tested for no differential expression between the two conditions, SNF2 and WT. Right: The MA plot shows the relationship between the expression change (M) and average expression strength (A); genes with adjusted p-values <0.05 are marked in red.

Heatmaps Heatmaps are a popular means to visualize the expression values across the individual samples. The following commands can be used to obtain heatmaps for rlog-normalized read counts for genes that show differential expression with adjusted p-values <0.05. There are numerous functions for generating heatmaps in R including NMF::aheatmap(), gplots::heatmap.2() and pheatmap::pheatmap(). A great package for generating customized heatmaps is the ComplexHeatmap package (Gu et al., 2016).

```
load the library with the aheatmap() function
   library(NMF)
  # aheatmap needs a matrix of values, e.g., a matrix of DE genes with the
     transformed read counts for each replicate
  # sort the results according to the adjusted p-value
  > DGE.results.sorted <- DGE.results[order(DGE.results$padj), ]</pre>
  # identify genes with the desired adjusted p-value cut-off
  > DGEgenes <- rownames(subset(DGE.results.sorted, padj < 0.05))
  # extract the normalized read counts for DE genes into a matrix
11
  > hm.mat_DGEgenes <- log.norm.counts[DGEgenes, ]</pre>
12
13
  # plot the normalized read counts of DE genes sorted by the adjusted p-value
14
  > aheatmap(hm.mat_DGEgenes, Rowv = NA, Colv = NA)
15
16
  # combine the heatmap with hierarchical clustering
17
  > aheatmap(hm.mat_DGEgenes,
18
      Rowv = TRUE, Colv = TRUE, # add dendrograms to rows and columns
19
      distfun = "euclidean", hclustfun = "average")
20
21
  # scale the read counts per gene to emphasize the sample-type-specific
22
     differences
  > aheatmap(hm.mat_DGEgenes,
23
           Rowv = TRUE, Colv = TRUE,
24
           distfun = "euclidean", hclustfun = "average",
25
           scale = "row") # values are transformed into distances from the center
26
                of the row-specific average: (actual value - mean of the group) /
               standard deviation
```

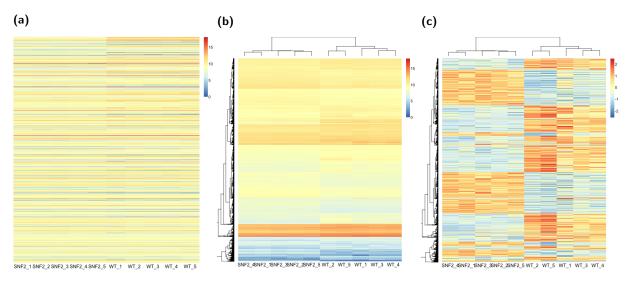


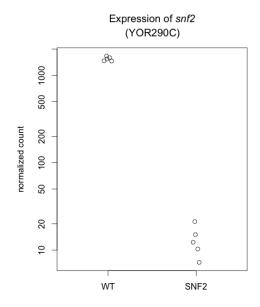
Figure 26: Heatmaps of rlog-transformed read counts for genes with adjusted p-values <0.05 in the DGE analysis. a) Genes sorted according to the adjusted p-values of the DGE analysis. b) Genes sorted according to hierarchical clustering. c) Same as for (b), but the read count values are scaled per row so that the colors actually represent z-scores rather than the underlying read counts.

Read counts of single genes An important sanity check of your data and the DGE analysis is to see whether genes about which you have prior knowledge behave as expected. For example, the samples named "SNF2" were generated from a mutant yeast strain where the snf2 gene was deleted, so snf2 should be among the most strongly downregulated genes in this DGE analysis.

To check whether snf2 expression is absent in the mutant strain, we first need to map the ORF identifiers that we used for generating the read count matrix to the gene name so that we can retrieve the rlog-transformed read counts and the moderated  $log_2$  fold changes. There is more than one way to obtain annotation data, here we will use a data base that can be directly accessed from within R. The website https://www.bioconductor.org/packages/release/data/annotation/lists all annotation packages that are available through bioconductor. For our yeast samples, we will go with org.Sc.sgd.db. For human data you could, for example, use org.Hs.eg.db.

```
> BiocManager::install("org.Sc.sgd.db")
  > library(org.Sc.sgd.db)
  # list the types of keywords that are available to query the annotation
      database
  > keytypes(org.Sc.sgd.db)
  # list columns that can be retrieved from the annotation data base
  > columns(org.Sc.sgd.db)
  # make a batch retrieval for all DE genes
10
  > anno <- select(org.Sc.sgd.db,
11
                  keys = DGEgenes, keytype = "ORF", # to retrieve all genes: keys
12
                     = keys(org.Sc.sgd.db)
13
                  columns = c("SGD", "GENENAME", "CHR"))
14
  # check whether SNF2 pops up among the top downregulated genes
15
  > DGE.results.sorted_logFC <- DGE.results[order(DGE.results$log2FoldChange), ]
16
  > DGEgenes_logFC <- rownames(subset(DGE.results.sorted_logFC, padj < 0.05))
17
  > head(anno[match(DGEgenes_logFC, anno$ORF), ])
18
19
  # find the ORF corresponding to SNF2
20
  subset(anno, GENENAME == "SNF2")
21
22
  # DESeq2 offers a wrapper function to plot read counts for single genes
23
  > library(grDevices) # for italicizing the gene name
24
  > plotCounts(dds = DESeq.ds,
26
             gene = "YOR290C",
             normalized = TRUE, transform = FALSE,
27
             main = expression( atop("Expression of "*italic("snf2"), "(YOR290C)"
28
                 ))))
```

While R offers myriad possibilities to perform downstream analyses on the lists of DE genes, you may also need to export the results into a simple text file that can be opened with other programs.



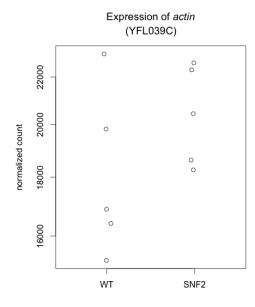


Figure 27: Read counts for snf2 and actin in the replicates of both conditions.

?

- 1. What is the difference between the moderated *log*-transformed values reported by either rlog(DESeqDataSet) or results(DESeqDataSet)?
- 2. Which analyses should be preferably performed on *log*-transformed read counts, which ones on *log* fold changes?

#### 6.3.3 Exercise suggestions

The following exercises will help you to familiarize yourself with the handling of the data objects generated by DESeq2:

- 1. Make a heatmap with the 50 genes that show the strongest change between the conditions. (the cut-off for the adjusted p-value should remain in place)
- 2. Plot the read counts for a gene that is not changing between the two conditions, e.g., actin.
- 3. Write a function that will plot the *rlog*-transformed values for a single gene, as in Figure 27. (Hint: aim for a boxplot via plot(), then add individual dots via points().)

## 6.3.4 edgeR

edgeR is very similar in spirit to DESeq2: both packages rely on the negative binomial distribution to model the raw read counts in a gene-wise manner while adjusting the dispersion estimates based on trends seen across all samples and genes (Table 7). The methods are, however, not identical, and results may vary. The following commands should help you perform a basic differential gene expression analysis, analogous to the one we have shown you for DESeq2, where five replicates from two conditions ("SNF2", "WT") were compared.

edgeR requires a matrix of read counts where the row names = gene IDs and the column names = sample IDs. Thus, we can use the same object that we used for DESeq2 (read.counts). In addition, we need to specify the sample types, similarly to what we did for DESeq2.

```
> BiocManager::install("edgeR") # install IF NEEDED
> library(edgeR)
> sample_info.edger <- factor(c( rep("WT", 5), rep("SNF2", 5)))
> sample_info.edger <- relevel(sample_info.edger, ref = "WT")</pre>
```

Now, DGEList() is the function that converts the count matrix into an edgeR object.

```
> edgeR.DGElist <- DGEList(counts = readcounts, group = sample_info.edger)

2
3 # check the result</pre>
```

```
| > head(edgeR.DGElist$counts)
| > edgeR.DGElist$samples
```

edgeR also recommends removing genes with almost no coverage. In order to determine a sensible cutoff, we plot a histogram of counts per million calculated by edgeR's cpm() function.

```
get an impression of the coverage across samples
 > hist(log2(rowSums(cpm(edgeR.DGElist))))
 > summary(log2(rowSums(cpm(edgeR.DGElist))))
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                    9.366
    2.927
            8.270
                            9.235 10.440
                                           17.830
 # remove genes that do not have one count per million in at least 5 samples
  # (adjust this to your sample!)
 > keep <- rowSums( cpm(edgeR.DGElist) >= 1) >= 5
 > edgeR.DGElist <- edgeR.DGElist[keep,]
 # recompute library sizes after filtering
12
 > edgeR.DGElist$samples$lib.size <- colSums(edgeR.DGElist$counts)
13
 > head(edgeR.DGElist$samples)
```

Calculate normalization factors for the library sizes. We use the standard edgeR method here, which is the trimmed mean of M-values; if you wanted to use, for example, DESeq's size factor, you could use method = "RLE"). See Table 13 for details of the methods.

```
> edgeR.DGElist <- calcNormFactors(edgeR.DGElist, method = "TMM")
2 > edgeR.DGElist$samples
```

To determine the differential expression in a gene-wise manner, edgeR first estimates the dispersion and subsequently tests whether the observed gene counts fit the respective negative binomial model. Note that the following commands are only appropriate if your data is based on an experiment with a single factor (e.g., mouse strain A vs. B; untreated cell culture vs. treated cell culture). For details on more complicated experimental set-ups, see the vignette of edgeR which can be found at the bioconductor website.

```
# specify the design setup - the design matrix looks a bit intimitating, but if
# you just focus on the formula [~sample_info.edger] you can see that it's
# exactly what we used for DESeq2, too
> design <- model.matrix(~sample_info.edger)

# estimate the dispersion for all read counts across all samples
> edgeR.DGElist <- estimateDisp(edgeR.DGElist, design)

# fit the negative binomial model
> edger_fit <- glmFit(edgeR.DGElist, design)

# perform the testing for every gene using the neg. binomial model
> edger_lrt <- glmLRT(edger_fit)</pre>
```

In contrast to DESeq, edgeR does not produce any values similar to the rlog-transformed read count values. You can, however, get library-size normalized  $log_2$  fold changes.

```
# extract results from edger_lrt$table plus adjusted p-values

> DGE.results_edgeR <- topTags(edger_lrt, n = Inf, # to retrieve all genes

sort.by = "PValue", adjust.method = "BH")
```

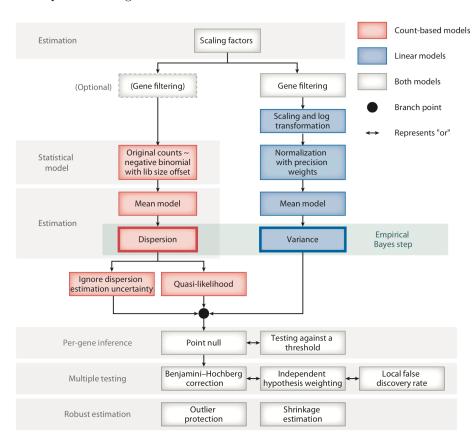
#### 6.3.5 limma-voom

Limma was originally developed for the analysis of microarray gene expression data using linear models. The functions of the limma package have continuously been developed for much more than a decade and have laid the foundation for many widely used statistical concepts for differential gene expression analysis (Smyth, 2004). In order to use the functionalities that had specifically been developed for microarray-based data, Law et al. (2014) implemented "precision weights" that are meant to transform the finicky count data (with all its statistically annoying properties including heteroskedasticity shown in Figure 21) into more tractable normally distributed data. The two main differences to edgeR and DESeq are:

- count values are transformed to log-cpm;
- instead of negative binomial models, linear models are used (on the log-cpm values normalized with "precision weights", Figure 28).

The steps limma takes are:

- 1. For every sample and gene, calculate the counts per million reads and log-transform these.
- 2. Fit a linear model to the log-cpm values taking the experimental design into account (e.g., conditions, batches etc.).
- 3. Use the resulting residual standard deviations for every gene to fit a global mean-variance trend across all genes and samples.
- 4. To obtain a "precision weight" for *single* gene observation (i.e., for every sample!), the fitted log-cpm values from step 2 are used to predict the counts for every gene and every sample. The mean-variance trend (step 3) is then used to interpolate the corresponding standard deviation for these predicted counts.
- 5. The squared inverse of this observation-wise estimated standard deviation is used as a penalty (inverse weight) during the test for differential expression. These penalty values are the above mentioned "precision weights".



**Figure** 28: Schematic overview of DE analysis for RNA-seq data. Red boxes correspond to pipelines for count-based (generalized linear) models (e.g., edgeR, DESeq2), while boxes correspond to a linear-model-based pipeline as implemented by limma-voom. Figure from Van den Berge et al. (2019).

Like DESeq and edgeR, limma starts with a matrix of raw read counts where each gene is represented by a

row and the columns represent samples. limma assumes that rows with zero or very low counts have been removed. In addition, size factors for sequencing depth can be calculated using edgeR's calcNormFactors() function.

```
> library(limma)
  # limma also needs a design matrix, just like edgeR
  > design <- model.matrix(~sample_info.edger)</pre>
  # transform the count data to log2-counts-per-million and estimate
  # the mean-variance relationship, which is used to compute weights
  # for each count -- this is supposed to make the read counts
  # amenable to be used with linear models
  > design <- model.matrix(~sample_info.edger)</pre>
  > rownames(design) <- colnames(edgeR.DGElist)
11
  > voomTransformed <- voom(edgeR.DGElist, design, plot=FALSE)
12
13
  # fit a linear model for each gene
14
  > voomed.fitted <- lmFit(voomTransformed, design = design)
15
  # compute moderated t-statistics, moderated F-statistics,
17
  # and log-odds of differential expression
  > voomed.fitted <- eBayes(voomed.fitted)
19
20
  # extract gene list with logFC and statistical measures
21
  > colnames(design) # check how the coefficient is named
  > DGE.results_limma <- topTable(voomed.fitted, coef = "sample_info.edgerSNF2",
23
                          number = Inf, adjust.method = "BH",
24
                          sort.by = "logFC")
```

From the limma user manual:

The logFC column gives the value of the contrast. Usually this represents a log2-fold change between two or more experimental conditions although sometimes it represents a log2-expression level. The AveExpr column gives the average log2-expression level for that gene across all the arrays and channels in the experiment. Column t is the moderated t-statistic. Column P.Value is the associated p-value and adj.P.Value is the p-value adjusted for multiple testing. The most popular form of adjustment is "BH" which is Benjamini and Hochberg's method to control the false discovery rate. (...) The B-statistic (lods or B) is the log-odds that the gene is differentially expressed. Suppose for example that B=1.5. The odds of differential expression is exp(1.5)=4.48, i.e, about four and a half to one. The probability that the gene is differentially expressed is 4.48/(1+4.48)=0.82, i.e., the probability is about 82% that this gene is differentially expressed. A B-statistic of zero corresponds to a 50-50 chance that the gene is differentially expressed. The B-statistic is automatically adjusted for multiple testing by assuming that 1% of the genes, or some other percentage specified by the user in the call to eBayes(), are expected to be differentially expressed. The p-values and B-statistics will normally rank genes in the same order. In fact, if the data contains no missing values or quality weights, then the order will be precisely the same.



For RNA-seq with more complex experimental designs, e.g. with more batches and conditions, the vignettes of DESeq2 and edgeR contain very good introductions and examples, including for time course experiments, paired samples as well as about filtering genes with the genefilter package (Bourgon et al., 2010). For a very comprehensive description of how the theories of linear models and particularly numerous motivations about the design matrix, have a look at Smyth (2004).

### 6.4 Judging DGE results

Once you have obtained a table of genes that show signs of differential expression, you have reached one of the most important milestones of RNA-seq analysis! To evaluate how confident you can be in that list of DE genes, you should look at several aspects of the analyses you did and perform basic checks on your results:

- 1. Did the unsupervised clustering and PCA analyses reproduce the major trends of the initial experiment? For example, did replicates of the same condition cluster together and were they well separated from the replicates of the other condition(s)?
- 2. How well do different DGE programs agree on the final list of DE genes? You may want to consider performing downstream analyses only on the list of genes that were identified as DE by more than one tool.
- 3. Do the results of the DGE analysis agree with results from small-scale experiments? Can you reproduce qPCR results (and vice versa: can you reproduce the results of the DGE analysis with qPCR)?
- 4. How robust are the observed fold changes? Can they explain the effects you see on a phenotypic level?



If your RNA-seq results are suggesting expression changes that differ dramatically from everything you would have expected based on prior knowledge, you should be very cautious!

The following code and images should just give you some examples of typical follow-up visualizations that can be done. To avoid having to load full libraries, we will use the syntax R library::function, i.e., gplots::venn uses the function venn() of the gplots package. This will directly call that function without loading all other functions of gplots into the working environment.

```
# make a Venn diagram
   DE_list <- list(edger = rownames(subset(DGE.results_edgeR$table, FDR<=0.05)),</pre>
                   deseq2 = rownames(subset(DGE.results, padj <= 0.05)),</pre>
                   limma = rownames(subset(DGE.results_limma, adj.P.Val<=0.05)))</pre>
  > gplots::venn(DE_list)
  # more sophisticated venn alternative, especially if you are comparing more
     than 3 lists
  > DE_gns <- UpSetR::fromList(DE_list)</pre>
  > UpSetR::upset(DE_gns, order.by = "freq")
10
  # correlation of logFC for genes found DE in all three tools
 > DE_gns_all <- row.names(DE_gns[rowSums(DE_gns) == 3,]) # extract the names
  # make a data.frame of fold change values
  > DE_fc <- data.frame(edger = DGE.results_edgeR[DE_gns_all,]$table$logFC,
14
                         limma = DGE.results_limma[DE_gns_all,]$logFC,
15
                         deseq2 = DGE.results[DE_gns_all,]$log2FoldChange,
16
                         row.names = DE_gns_all)
17
   visually check how well the estimated logFC of the different tools agree for
      the DE genes
    pairs(DE_fc)
19
20
  # heatmap of logFC
21
    pheatmap::pheatmap( as.matrix(DE_fc) )
```

See Figure 29 to see the plots generated by the code above. They illustrate that there's a large agreement between the three different tools since the vast majority of genes is identified by all three tools as differentially expressed. More importantly, all three tools agree on the direction and the magnitude of the fold changes although there are some individual genes where DESeq2's estimates of the log fold changes are slightly different than the ones from edgeR or limma.

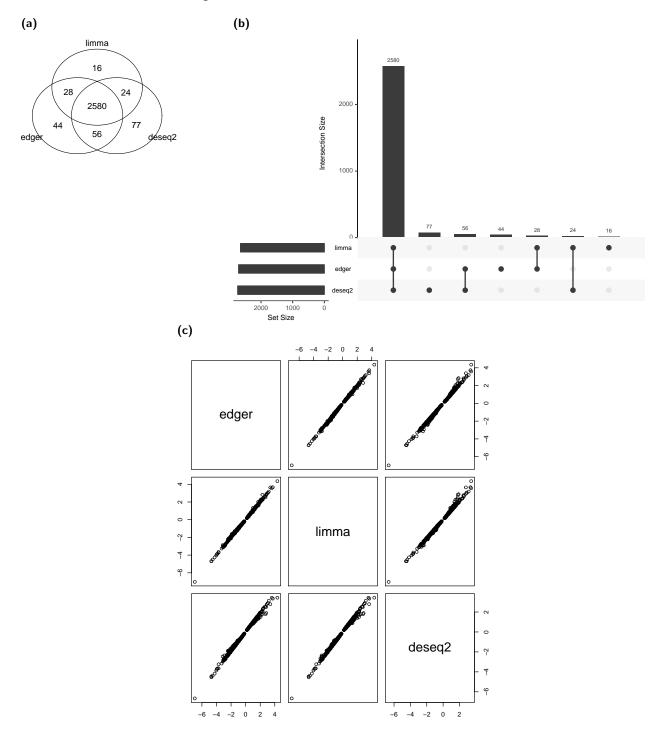


Figure 29: Some basic plots to judge the agreement of the three different DGE tools that we used. (a) Venn diagram of gene names. (b) Upset plot of gene names that displays the total size of every set in the bottom left corner, followed by the type of intersection (dots connected by lines) and the size of the intersection using vertical bars. (c) Pairwise plots of estimated/moderated log-fold-changes as determined by either one of the tools. Shown here are the genes that were identified as DE in all three tools (2,580 genes). The code used to generate those images is shown at the beginning of section 6.4.

### 6.5 Example downstream analyses

Most downstream analyses will be very specific to your question of interest and the model system you are studying. Generally, most downstream analyses are aimed at elucidating the functions of the DE genes and to identify possible patterns among them. There are myriad tools to achieve this goal, typical analyses include:

- enrichments of certain gene ontology (GO) terms encompassing the three classes of GO terms: biological processes, cell components and molecular functions;
- enrichments of certain pathways such as those defined by MSigDB (Liberzon et al., 2015), STRING (Szklarczyk et al., 2017), or KEGG (Kanehisa et al., 2017);
- identification of specific "master" regulators or transcription factors that may underlie a bulk of the changes that are seen.

Enrichments are typically assessed by either one of two approaches: (i) over-representation analysis (ORA) or (ii) gene set enrichment analyses (GSEA). Both approaches are discussed in great detail by Khatri et al. (2012) and Alhamdoosh et al. (2017).

All types of enrichment analyses are based on comparisons between genes, that means that the gene-specific biases such as gene length may cause spurious findings. In fact, Young et al. (2010) describe convincingly how long transcripts and genes are much more likely to (a) be detected as differentially expressed and (b) tend to be over-represented in most of the commonly used databases because their length makes it more likely that they are detected across many different experiments. The goseq package therefore tries to correct for the inherently increased likelihood of long genes to be present on your list of interest.

Over-representation analyses These types of analyses rely on a filtered list of genes of interest, e.g. all genes that pass the DE filter. This list is compared to the genes that are known to be part of a specific pathway or a generic gene set of interest, e.g. "Glycolysis". A statistical test (e.g. hypergeometric test) is then used to determine whether the overlap between the gene list of interest and the known pathway is greater than expected by chance. While this approach is relatively straight-forward, there are serious limitations including the fact that both magnitude and direction of the change of individual genes are completely disregarded; the only measure that matters is the presence of absence of a given gene within the lists that are being compared.

Gene set enrichment analyses To address some of the limitations of the ORA approach, functional scoring algorithms typically do not require a pre-selected list of genes; instead, they require a fairly exhaustive list of all genes that could make up your "universe" of genes. These genes should have some measure of change by which they will be sorted. The basic assumption is that although large changes in individual genes can have significant effects on pathways, weaker but coordinated changes in sets of functionally related genes (i.e., pathways) can also have significant effects. Therefore, the gene-level statistics for all genes in a pathway are aggregated into a single pathway-level statistic (e.g. the sum of all log-fold changes), which will then be evaluated.

While GSEA does take the magnitude and direction of change into consideration, pathways are regarded as independent units despite the fact that many pathways share individual genes. See Khatri et al. (2012) for an in-depth discussion of its limitations.



The vast majority of downstream analyses are **hypothesis-generating** tools! Most gene set tests are not robust to changes in sample size, gene set size, experimental design and fold-change biases.

The following list contains some of the tools that can be used for enrichment analyses – it is by no means exhaustive, but it may give you an idea of additional possible directions and tools to explore. For example analyses with goseq and clusterProfiler using the yeast dataset we've been using throughout class, see https://github.com/friedue/course\_RNA-seq2019/tree/master/Day04.

- for GO term enrichments, you can first identify enriched GO terms with limma::goana() or the goseq package, followed by additional tools such as GOrilla (http://cbl-gorilla.cs.technion.ac.il/) and REVIGO (http://revigo.irb.hr/) to summarize the lists
- for KEGG pathway enrichment, try GAGE & PATHVIEW (https://pathview.uncc.edu/) ‡
- the clusterProfiler package (https://yulab-smu.github.io/clusterProfiler-book/) offers multiple ways for testing enrichments, including for REACTOME and KEGG pathways;
- Gene Set Enrichment Analysis (GUI-based GSEA: https://www.broadinstitute.org/gsea/index.jsp); fast R-based GSEA implementation: http://www.bioconductor.org/packages/release/bioc/html/fgsea.html)
- Enrichr (https://amp.pharm.mssm.edu/Enrichr3/) and RegulatorTrail (https://regulatortrail.bioinf.uni-sb.de/) offer the ability to identify possible upstream regulators
- Ingenuity Pathway Analysis Studio (commercial software)
- ...

 $<sup>^{\</sup>ddagger}$ https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pat

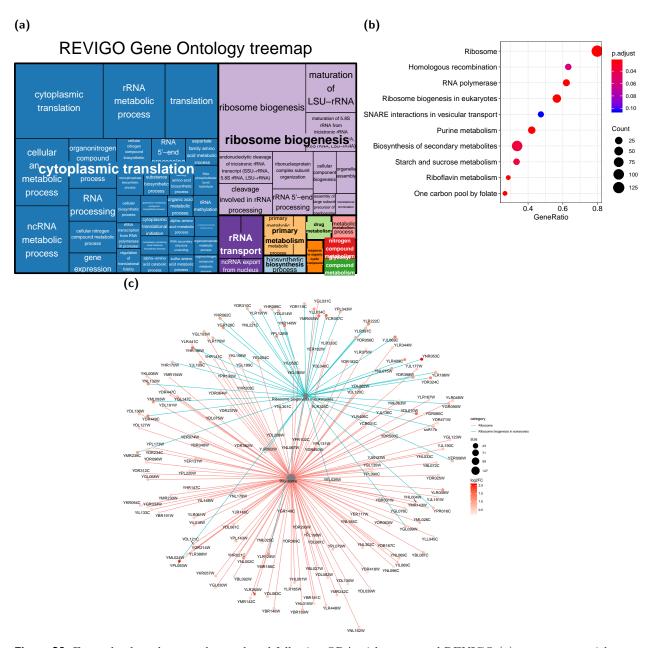


Figure 30: Example plots that may be produced following ORA with goseq and REVIGO (a) or gene set enrichment analysis using the KEGG pathways and visualizations provided by clusterProfiler (b, c). (a) Treemap generated by REVIGO to group GO terms that were determined to be enriched in our set of yeast DEG by goseq. The size of the squares corresponds to inverse of the log(p-value) of the enrichment, the colors indicate semantically similar terms. (b) Dot plot generated with the clusterProfiler package following GSEA for KEGG pathways. Shown here are the most significantly enriched pathways. (c) Gene concept network generated with the cnetplot function of the clusterProfiler package on the same results. This plot is useful to visually assess the overlap of genes between different gene sets: the edges correspond to the membership of a given gene within a gene set (central node). See https://github.com/friedue/course\_RNA-seq2019/tree/master/Day04 for the code.

# 7 Appendix

## 7.1 Improved alignment

The problem with our alignment command in Section 3.2 is that the reads contain massive insert sizes. This is most likely due to the settings controlling the size of what an acceptable intron looks like. Since yeast has a fairly small genome with relatively few (and small) introns per gene, we should tune that parameter to fit the specific needs.

To determine suitable lower and upper limits for intron sizes, we will need to download an annotation that will allow us to determine those sizes easily. This could, for example, be done via the UCSC Table Browser, as described in this Biostars post: https://www.biostars.org/p/13290/.

Now that we have a feeling for what the sizes of annotated introns look like, we can re-run STAR:

```
runSTAR=~/mat/software/STAR-2.5.3a/bin/Linux_x86_64/STAR
  REF_DIR=~/mat/referenceGenomes/S_cerevisiae/STARindex/
  for SAMPLE in WT_1 SNF2_1
  do
    # get a comma-separated list of fastq files for each sample
    for FASTQ in ~/mat/precomputed/rawReads_yeast_Gierlinski/${SAMPLE}/*fastq.gz
      FILES=`echo $FASTQ, $FILES` # this will have an additional comma in the end
10
11
    FILES = `echo $FILES | sed 's/,$//'` # if you want to remove the last comma
12
    echo "Aligning files for ${SAMPLE}, files:"
14
    echo $FILES
15
16
    $runSTAR --genomeDir ${REF_DIR} --readFilesIn $FILES \
17
    --readFilesCommand gunzip -c \
18
    --outFileNamePrefix ${SAMPLE}_
19
    --outFilterMultimapNmax 1 \
20
    --outSAMtype BAM SortedByCoordinate \
21
    --runThreadN 2 \
22
    --twopassMode Basic \
23
    --alignIntronMin 1 \
24
    --alignIntronMax 2500
25
  done
```

### 7.2 Additional tables

**Table 8:** All high-throughput sequencing data will suffer from some degree of bias due to the biochemistry of the sequencing, the detection technique and bioinformatics processing. Biases that are oftentimes sample-specific (e.g., GC content, fragment length distributions) are common sources of technical variation that can either mask or (worse!) mimick biological signals. For descriptions of RNA-seq specific biases, see the main text and ('t Hoen et al., 2013; Li et al., 2014; Su et al., 2014).

| Problem                                            | Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solutions                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Batch effects                                      | <ul> <li>variation in the sample processing (e.g., reagent batches, experimenters, pipetting accuracy)</li> <li>flowcell inconsistencies</li> <li>differences between sequencing runs (e.g., machine calibration)</li> </ul>                                                                                                                                                                                                                  | <ul> <li>appropriate experimental design (e.g., proper randomization (Auer and Doerge, 2010; Honaas et al., 2016))</li> <li>samples of the same experiment should have similar quality and quantity</li> <li>optimal experimental conditions (use of master mixes etc.)</li> </ul>                                                                                          |
| Library preparation (PCRdependent biases)          | <ul> <li>varying GC content can result in very distinct, library-specific fragment yields</li> <li>fragment size: small fragments are preferably hybridized to the flowcell</li> <li>low number of founder DNA fragments will yield numerous duplicated fragments</li> </ul>                                                                                                                                                                  | <ul> <li>optimizing cross-linking, sonication, and the mRNA enrichment to ensure that the majority of the transcriptome is present in the sample</li> <li>limiting PCR cycles during library preparation to a minimum</li> <li>computational correction for GC content and elimination of reads from identical DNA fragments (e.g., (Benjamini and Speed, 2012))</li> </ul> |
| Sequencing errors<br>and errors in base<br>calling | <ul> <li>loss of synchronized base incorporation into the single molecules within one cluster of clonally amplified DNA fragments (phasing and pre-phasing)</li> <li>mixed clusters</li> <li>signal intensity decay over time due to unstable reagents</li> <li>uneven signal intensities depending on the position on the flowcell</li> <li>overlapping emission frequency spectra of the four fluorescently-labelled nucleotides</li> </ul> | <ul> <li>improvement of the sequencing chemistry and detection</li> <li>optimized software for base calling</li> <li>computational removal of bases with low base calling scores</li> </ul>                                                                                                                                                                                 |
| Copy number variations and mappability             | <ul> <li>incomplete genome assemblies</li> <li>strain-specific differences from the reference assembly may lead to misrepresentation of individual loci</li> <li>repetitiveness of genomes and shortness of sequencing reads hinder unique read alignment</li> </ul>                                                                                                                                                                          | <ul> <li>longer sequencing reads</li> <li>paired-end sequencing</li> <li>exclusion of blacklisted regions that are known to attract artificially high read numbers (Kundaje, 2013)</li> <li>computational correction for mappability</li> </ul>                                                                                                                             |

| Plot title                       | Details                                                                                                                                                                                                                                                                                                            | Warning (Failure)                                                                   | Solution                                                                                                                                                                                                                                                                                        |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per base sequence quality        | This plot is based on the quality scores reported and stored by the sequencing platform (Phred scores, see above). For Illumina sequencing, the reagents degrade throughout the sequencing run which is why the last bases tend to get worse scores.                                                               | Lower quartile for any base $<10$ ( $<5$ ), or median for any base $<25$ ( $<20$ ). | Trimming reads based on their average quality.                                                                                                                                                                                                                                                  |
| Per <i>tile</i> sequence quality | Check whether a part of the flowcell failed (e.g., due to bubbles or dirt on the flowcell). The plot shows the deviation from the average quality.                                                                                                                                                                 | Any tile with a mean Phred score $>2$ (>5) for that base across all tiles.          | The FASTQ file contains the tile IDs for each read which can be used to filter out reads from flawed tiles. Note though that variation in the Phred score of a flowcell is also a sign of overloading; tiles that are affected for only few cycles can be ignored.                              |
| Per sequence quality scores      | Identify putative subsets of poor sequences.                                                                                                                                                                                                                                                                       | Most frequent mean quality $\langle 27 \ (\langle 20 \rangle)$ .                    | Quality trimming.                                                                                                                                                                                                                                                                               |
| Per base sequence content        | <ul> <li>Expectation: all bases should be sequenced as often as they are represented in the genome. Reasons why this assumption may not hold:</li> <li>random hexamer priming during library preparation</li> <li>contamination (e.g., adapter dimers)</li> <li>bisulfite treatment (loss of cytosines)</li> </ul> | Difference between A and T, or G and C > 10% (>20%) in any position.                | If overrepresented sequences are the cause of a failure, these can be removed.                                                                                                                                                                                                                  |
| Per sequence<br>GC content       | The GC content of each read should be roughly normally distributed (maximum should correspond to the average GC content of the genome). Note that the reference shown here is also based on the supplied FASTQ file, therefore it will not be able to detect a global shift of GC content.                         | Deviations from the normal distribution for >15% (30%) of the reads                 | Sharp peaks on an otherwise smooth distribution usually indicate a specific contaminant that should also be reported as an overrepresented sequence. Broader peaks outside the expectated distribution may represent contaminating sequences from a species with a different GC genome content. |
| Per base N content               | Percentage of base calls at each position for which an N was called by the sequencer indicating lack of confidence to make a base call.                                                                                                                                                                            | Any position with an N content of $>5\%$ (20%)                                      | A common reason for large numbers of N is lack of library complexity, i.e., if all reads start with the same bases, the sequencer may not be able to differentiate them sufficiently.                                                                                                           |

Table  $9-Continued\ from\ previous\ page$ 

| Plot title                           | Details                                                                                                                                                                                                                                                                                                                                                                          | Warning (Failure)                                                                                              | Solution                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sequence<br>length distri-<br>bution | Determines the lengths of the sequences of the FASTQ file. The distribution of read sizes should be uniform for Illumina sequencing.                                                                                                                                                                                                                                             | Warning is raised if not all sequences are the same length; failure is issued if any sequence has zero length. | For Illumina sequencing, different read lengths should only occur if some sort of bioinformatic trimming has happened prior to the FASTQC analysis.                                                                                                                                                                                                                                                 |
| Duplicate sequences                  | The sequenced library should contain a random and complete representation of the genome or transcriptome, i.e., most sequences should occur only once. High duplication rates are indicative of PCR overamplification which may be caused by an initial lack of starting material. Note that this module only takes the first 100,000 sequences of each file into consideration. | Non-unique sequences make up more than 20% (50%) of all reads.                                                 | Unless you have reasons to expect sequences to be duplicated (i.e., specific enrichments of certain sequences), this plot is a strong indicator of suboptimal sample preparation. Duplication due to excessive sequencing will be reflected by flattened lines in the plot; PCR overamplification of low complexity libraries are indicated by sharp peaks towards the right-hand side of the plot. |
| Over-represented sequences           | All sequences which make up more than $0.1\%$ of the first $100,000$ sequences are listed.                                                                                                                                                                                                                                                                                       | Any sequence representing $>0.1\%~(1\%)$ of the total.                                                         | Bioinformatic removal of contaminating sequences.                                                                                                                                                                                                                                                                                                                                                   |
| Adapter content                      | This module specifically searches for a set of known adapters. The plot itself shows a cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.                                                                                                                                                              | Any adapter present in more than 5% (10%) of all reads.                                                        | Bioinformatic removal of adapter sequences.                                                                                                                                                                                                                                                                                                                                                         |
| K-mer content                        | The number of each 7-mer at each position is counted; then a binomial test is used to identify significant deviations from an even coverage at all positions (only 2% of the whole library is analyzed and the results are extrapolated).                                                                                                                                        | Any k-mer overrepresented with a binomial p-value $<0.01~(<10^{-5})$                                           | Libraries which derive from random priming will nearly always show k-mer bias at the start of the library due to an incomplete sampling of the possible random primers. Always check the results of the adapter content and overrepresented sequences modules, too.                                                                                                                                 |

**Table 10:** Types of optional entries that can be stored in the header section of a SAM file following the format <code>@<Section> <Tag>:<Value></code>. The asterisk indicates which tags are required if a section is set.

| Section         | Tag                 | Description                                                      |  |
|-----------------|---------------------|------------------------------------------------------------------|--|
| HD (header)     | VN*                 | File format version                                              |  |
|                 |                     | Sort order ("unsorted", "queryname", or "coordinate")            |  |
|                 | SN*                 | Sequence name (e.g., chromosome name)                            |  |
|                 | $LN^*$              | Sequence length                                                  |  |
| SQ (sequence    | AS                  | Genome assembly identifier (e.g., mm9)                           |  |
| dictionary)     | M5                  | MD5 checksum of the sequence                                     |  |
|                 | UR                  | URI of the sequence                                              |  |
|                 | SP                  | Species                                                          |  |
|                 | ID*                 | Read group identifier (e.g. "Lane1")                             |  |
|                 | $SM^*$              | Sample                                                           |  |
|                 | LB                  | Library                                                          |  |
|                 | DS                  | Description                                                      |  |
| RG (read group) | PU                  | Platform unit (e.g., lane identifier)                            |  |
|                 | PΙ                  | Predicted median insert size                                     |  |
|                 | CN                  | Name of the sequencing center                                    |  |
|                 | $\operatorname{DT}$ | Date of the sequencing run                                       |  |
|                 | PL                  | Sequencing platform                                              |  |
| DC ()           | ID*                 | Name of the program that produced the SAM file                   |  |
| PG (program)    | VN                  | Program version                                                  |  |
|                 | $\operatorname{CL}$ | Command line used to generate the SAM file                       |  |
| CO (comment)    |                     | Unstructured one-line comment lines (can be used multiple times) |  |

Table 11: Overview of RSeQC scripts. See the online documentation of RSeQC (http://rseqc.sourceforge.net) and Wang et al. (2012) for more details. Note that tools marked in red have been shown to return erroneous results (Hartley and Mullikin, 2015).

| Script                                | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Basic read quality                                                                                                                                                                                                                                                                                                                                                                                                        |
| read_duplication                      | Determine read duplication rate, based on the sequence only (output.dup.seq.DupRate.xls) as well as on the alignment positions (output.dup.pos.DupRate.xls).                                                                                                                                                                                                                                                              |
| read_hexamer                          | Calculates hexamer frequencies from FASTA or FASTQ files. Similar to FASTQC's k-mer content analysis.                                                                                                                                                                                                                                                                                                                     |
| read_GC                               | Calculates % GC for all reads. Similar to FASTQC's GC distribution plot, the peak of the resulting histogram should coincide with the average GC content of the genome.                                                                                                                                                                                                                                                   |
| read_NVC                              | Calculates the nucleotide composition across the reads; similar to FASTQC's per base sequence content analysis.                                                                                                                                                                                                                                                                                                           |
| ${\sf read\_quality}$                 | Calculates distributions for base qualities across reads; similar to FASTQC's per base sequence quality analysis.                                                                                                                                                                                                                                                                                                         |
|                                       | Alignment QC                                                                                                                                                                                                                                                                                                                                                                                                              |
| bam_stat                              | Calculates reads mapping statistics for a BAM (or SAM) file. Note that uniquely mapped reads are determined on the basis of the mapping quality.                                                                                                                                                                                                                                                                          |
| clipping_profile                      | Estimates clipping profile of RNA-seq reads from BAM or SAM file. This will fail if the aligner that was used does not support clipped mapping (CIGAR strings must have S operation).                                                                                                                                                                                                                                     |
| ${	t mismatch\_profile}$              | Calculates distribution of mismatches along reads based on the MD tag.                                                                                                                                                                                                                                                                                                                                                    |
| insertion_profile,                    | Calculates the distribution of insertions or deletions along reads.                                                                                                                                                                                                                                                                                                                                                       |
| deletion_profile<br>read_distribution | Calculates fractions of reads mapping to transcript features such as exons, 5'UTR, 3' UTR, introns.                                                                                                                                                                                                                                                                                                                       |
| RPKM_saturation                       | The full read set is sequentially downsampled and RPKMs are calculated for each subset. The resulting plot helps determine how well the RPKM values can be estimated. The visualized percent relative error is calculated as $\frac{ RPKM_{subsample} - RPKM_{max} }{RPKM_{max}} * 100$                                                                                                                                   |
|                                       | RNA-seq-specific QC                                                                                                                                                                                                                                                                                                                                                                                                       |
| geneBody_coverage                     | Scales all transcripts to 100 bp, then calculates the coverage of each base. The read coverage should be uniform and ideally not show 5' or 3' bias since that would suggest problems with degraded RNA input or with cDNA synthesis.                                                                                                                                                                                     |
| infer_experiment                      | Speculates how RNA-seq sequencing was configured, i.e., PE or SR and strand-specificity. This is done by subsampling reads and comparing their genome coordinates and strands with those of the transcripts from the reference gene model. For non-strand-specific libraries, the strandedness of the reads and the transcripts should be independent. See http://rseqc.sourceforge.net/#infer-experiment-py for details. |
| $\verb junction_annotation  $         | Compares detected splice junctions to the reference gene model, classifying them into 3 groups: annotated, complete novel, partial novel (only one of the splice sites is unannotated). The script differentiates between splice events (single read level) and splice junctions (multiple reads show the same splicing event).                                                                                           |
| ${\tt junction\_saturation}$          | Similar concept to RPKM_saturation: splice junctions are detected for each sampled subset of reads. The detection of annotated splice sites should be saturated with the maximum coverage (= all supplied reads), otherwise alternative splicing analyses are not recommended because low abundance splice sites will not be detected.                                                                                    |

Continued on next page

Table 11 – Continued from previous page

| Script                          | Purpose                                                                                                                                                                                                                                                                                      |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tin                             | Calculates the transcript integrity number (TIN) (not to be confused with the RNA integrity number, RIN, that is calculated before sequencing based on the $28S/18S$ ratio). TIN is calculated for each transcript and represents the fraction of the transcript with uniform read coverage. |
|                                 | General read file handling and processing                                                                                                                                                                                                                                                    |
| bam2fq<br>bam2wig<br>divide_bam | Converts BAM to FASTQ.  Converts read positions stored in a BAM file into read coverage measures all types of RNA-seq data in BAM format into wiggle file.  Equally divides a given BAM file (m alignments) into n parts. Each part                                                          |
|                                 | contains roughly $m/n$ alignments that are randomly sampled from the entire alignment file.                                                                                                                                                                                                  |
| inner_distance                  | Estimates the inner distance (or insert size) between two paired RNA reads (requires PE reads). The results should be consistent with the gel size selection during library preparation.                                                                                                     |
| $overlay\_bigwig$               | Allows the manipulation of two BIGWIG files, e.g., to calculate the sum of coverages. See theaction option for all possible operations.                                                                                                                                                      |
| normalize_bigwig                | Normalizes all samples to the same wigsum (= number of bases covered by $read  length * total  no.  of  reads$ ).                                                                                                                                                                            |
| split_bam,<br>split_paired_bam  | Provided with a gene list and a BAM file, this module will split the original BAM file into 3 smaller ones:                                                                                                                                                                                  |
|                                 | <ol> <li>*.in.bam: reads overlapping with regions specified in the gene list</li> <li>*.ex.bam: reads that do not overlap with the supplied regions</li> <li>*.junk.bam: reads that failed the QC or are unaligned</li> </ol>                                                                |
| RPKM_count                      | Calculates the raw count and RPKM values for each exon, intron and mRNA region defined by the provided annotation file.                                                                                                                                                                      |

Table 12: Overview of QoRTs QC functions. See the online documentation of QoRTs (http://hartleys.github.io/QoRTs/index.html) and Hartley and Mullikin (2015) for more details.

| QC Function                          | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Basic read quality                                                                                                                                                                                                                                                                                                                                                                                                          |
| GCDistribution                       | Calculates GC content distribution for all reads. Similar to FASTQC's GC distribution plot, the peak of the resulting histogram should coincide with the average GC content of the genome.                                                                                                                                                                                                                                  |
| NVC                                  | Calculates the nucleotide composition across the length of the reads; similar to FASTQC's per base sequence content analysis. on Calculates distributions for base qualities across reads; similar to FASTQC's                                                                                                                                                                                                              |
| qualityScoreDistribution             | per base sequence quality analysis.                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      | Alignment QC                                                                                                                                                                                                                                                                                                                                                                                                                |
| chromCounts                          | Calculates number of reads mapping to each category of chromosome (autosomes, allosomes, mtDNA).                                                                                                                                                                                                                                                                                                                            |
| CigarOpDistribution                  | Calculates rate of various CIGAR operations as a function of read length, including insertions, deletions, splicing, hard and soft clipping, padding, and alignment to reference. See Section 3.3.2 for details about CIGAR operations.                                                                                                                                                                                     |
| GeneCalcs                            | Calculates fractions of reads mapping to genomic features such as unique genes, UTRs, ambiguous genes, introns, and intergenic regions.                                                                                                                                                                                                                                                                                     |
|                                      | RNA-seq-specific QC                                                                                                                                                                                                                                                                                                                                                                                                         |
| writeGeneBody                        | Breaks up all genes into 40 equal-length counting bins and determines the number of reads that overlap with each counting bin. The read coverage should be uniform and ideally not show 5' or 3' bias since that would suggest degraded RNA input or problems with cDNA synthesis.                                                                                                                                          |
| writeGenewiseGeneBody<br>StrandCheck | Writes file containing gene-body distributions for each gene. Checks if the data is strand-specific by calcualting the rate at which reads appear to follow the two possible library-type strandedness rules (fr-firststrand and fr-secondstrand, described by the CuffLinks documentation at http://cufflinks.cbcb.umd.edu/manual.html#library).                                                                           |
| JunctionCalcs                        | Calculates the number of novel and known splice junctions. Splice junctions are split into 4 groups, first by whether the splice junction appears in the gene annotation GTF (known vs. novel), and then by whether the splice junction has fewer or $\geq 4$ reads covering it.                                                                                                                                            |
|                                      | General read file handling and processing                                                                                                                                                                                                                                                                                                                                                                                   |
| InsertSize                           | Estimates the inner distance (or insert size) between two paired RNA reads (requires PE reads). The results should be consistent with the gel size selection during library preparation.                                                                                                                                                                                                                                    |
| makeWiggles                          | Converts read positions stored in a BAM file into wiggle files with 100-bp window size.                                                                                                                                                                                                                                                                                                                                     |
| ${\tt makeJunctionBed}$              | Creates a BED file for splice-junction counts.                                                                                                                                                                                                                                                                                                                                                                              |
| writeGeneCounts                      | Calculates raw number of reads mapping to each gene in the annotation file. Also creates a cumulative gene diversity plot, which shows the percent of the total proportion of reads as a function of the number of genes sequenced. This is useful as an indicator of whether a large proportion of the reads stem from of a small number of genes (as a result of ribosomal RNA or hemoglobin contamination, for example). |
| ${\tt calcDetailedGeneCounts}$       | Calculates more detailed read counts for each gene, including the number of reads mapping to coding regions, UTR, and intronic regions.                                                                                                                                                                                                                                                                                     |

Continued on next page

Table 12 – Continued from previous page

| Function           | Purpose                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| writeBiotypeCounts | Write a table listing read counts for each biotype, which is a classification of genes into broader categories (e.g., protein coding, pseudogene, processed pseudogene, miRNA, rRNA, scRNA, snoRNA, snRNA). Note that, in order for this function to succeed, the optional "gene_biotype" attribute is required to be present in the gene annotation file (GTF). |
| FPKM               | Calculates FPKM values for each gene in the annotation file.                                                                                                                                                                                                                                                                                                     |

**Table 13:** Normalization methods for the comparison of gene read counts between different conditions. See, for example, Bullard et al. (2010) and Dillies et al. (2013) for comprehensive assessments of the individual methods.

| Name                                    | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comment                                                                                                                                                                                                                                                                                                                                                                  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Total Count                             | All read counts are divided by the total number of reads (library size) and multiplied by the mean total count across all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>biased by highly expressed genes</li> <li>cannot account for different RNA repertoire between samples</li> <li>poor detection sensitivity when benchmarked against qRT-PCR (Bullard et al., 2010)</li> </ul>                                                                                                                                                    |  |
| Counts Per<br>Million                   | Each gene count is divided by the corresponding library size (in millions).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • see Total Count                                                                                                                                                                                                                                                                                                                                                        |  |
| DESeq's size<br>factor                  | <ol> <li>For each gene, the geometric mean of read counts across all samples is calculated.</li> <li>Every gene count is divided by the geometric mean.</li> <li>A sample's size factor is the median of these ratios (skipping the genes with a geometric mean of zero).</li> </ol>                                                                                                                                                                                                                                                                                                               | <ul> <li>the size factor is applied to all read counts of a sample</li> <li>more robust than total count normalization</li> <li>implemented by the DESeq R library (estimateSizeFactors() function), also available in edgeR (calcNormFactors() function with option method = "RLE")</li> <li>details in Anders and Huber (2010)</li> </ul>                              |  |
| Trimmed<br>Mean of<br>M-values<br>(TMM) | <ul> <li>TMM is always calculated as the weighted mean of log ratios between two samples:</li> <li>1. Calculate gene-wise log<sub>2</sub> fold changes (= M-values):  M<sub>g</sub> = log<sub>2</sub>(Y<sub>gk</sub>/N<sub>k</sub>)/log<sub>2</sub>(Y<sub>gk'</sub>/N<sub>k'</sub>)  where Y is the observed number of reads per gene g in library k and N is the total number of reads.</li> <li>2. Trimming: removal of upper and lower 30%.</li> <li>3. Precision weighing: the inverse of the estimated variance is used to account for lower variance of genes with larger counts.</li> </ul> | <ul> <li>the size factor is applied to every sample's library size; normalized read counts are obtained by dividing raw read counts by the TMM-adjusted library sizes</li> <li>more robust than total count normalization</li> <li>implemented in edgeR via calcNormFactors() with the default method = "TMM"</li> <li>details in Robinson and Oshlack (2010)</li> </ul> |  |
| Upper<br>quartile                       | <ol> <li>Find the upper quartile value (top 75% read counts after removal of genes with 0 reads).</li> <li>Divide all read counts by this value.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>similar to total count normalization, thus it also suffers from a great influence of highly-expressed DE genes</li> <li>can be calculated with edgeR's calcNormFactors() function (method = "upperquartile")</li> </ul>                                                                                                                                         |  |

 Table 14: Normalization methods for the comparison of gene read counts within the same sample.

| Name                                                                    | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comment                                                                                                                                                                                |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RPKM (reads<br>per kilobase of<br>exons per<br>million mapped<br>reads) | <ol> <li>For each gene, count the number of reads mapping to it (X<sub>i</sub>).</li> <li>Divide that count by: the length of the gene, l<sub>i</sub>, in base pairs divided by 1,000 multiplied by the total number of mapped reads, N, divided by 10<sup>6</sup>.</li> <li>RPKM<sub>i</sub> =  X<sub>i</sub> / (1/10<sup>3</sup>)(N/10<sup>6</sup>)</li> </ol>                                                                                                                                                  | <ul> <li>introduces a bias in the per-gene variances, in particular for lowly expressed genes (Oshlack and Wakefield, 2009)</li> <li>implemented in edgeR's rpkm() function</li> </ul> |
| FPKM<br>(fragments per<br>kilobase)                                     | <ol> <li>Same as RPKM, but for paired-end reads:</li> <li>The number of fragments (defined by two reads each) is used.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                 | • implemented in DESeq2's fpkm() function                                                                                                                                              |
| TPM                                                                     | Instead of normalizing to the total library size, TPM represents the abundance of an individual gene $i$ in relation to the abundances of the other transcripts (e.g., $j$ ) in the sample.  1. For each gene, count the number of reads mapping to it and divide by its length in base pairs (= counts per base).  2. Multiply that value by 1 divided by the sum of all counts per base of every gene.  3. Multiply that number by $10^6$ . $TPM_i = \frac{X_i}{l_i} * \frac{1}{\sum_j \frac{X_j}{l_k}} * 10^6$ | • details in Wagner et al. (2012)                                                                                                                                                      |

### 7.3 Installing bioinformatics tools on a UNIX server

Tools are shown in order of usage throughout the script. The exact version numbers and paths may be subject to change!

### **FASTQC**

1. Download.

```
$ wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0
.11.8.zip
```

2. Unzip and make executable.

#### MultiQC

1. Install anaconda, a package which helps manage Python installations:

```
$ wget https://repo.continuum.io/archive/Anaconda2-5.3.1-Linux-x86_64.sh
bash Anaconda2-5.3.1-Linux-x86_64.sh
```

You will need to accept the license terms, specify where to install anaconda, and specify whether you want anaconda's install location to be prepended to your PATH variable.

2. Make sure anaconda's install location is prepended to your PATH variable:

```
$ export PATH=/home/classadmin/software/anaconda2/bin:$PATH
```

3. Install MultiQC using anaconda's pip

```
s pip install multiqc
```

#### samtools

1. Download source code and unzip it.

```
$ wget -0 samtools-1.9.tar.bz2 https://github.com/samtools/samtools/
releases/download/1.9/samtools-1.9.tar.bz2

$ tar jxf samtools-1.9.tar.bz2
3 $ cd samtools-1.9
```

2. Compile.

```
1 $ make
```

3. Check whether the tool is running.

```
1 $ ./samtools
```

4. Add the location where samtools was installed to your PATH variable; this way you will not need to specify the exact location everytime you want to run the tool.

```
1 $\ \text{export PATH=/home/classadmin/software/samtools-1.9:$PATH}
```

#### RSeQC

1. RSeQC is a python tool like MultiQC and can be installed using pip. Make sure anaconda's install location is prepended to your PATH variable:

2. Install RSeQC using anaconda's installer

```
1 $\pip install RSeQC
```

### QoRTs

1. Install the R component (in R):

2. Download the Java component (in the Terminal).

```
$ wget -0 qorts.jar "https://github.com/hartleys/QoRTs/archive/v1.3.6.tar.
gz"
```

#### STAR

1. Download.

```
$ wget -0 STAR-2.7.1a.tar.gz https://github.com/alexdobin/STAR/archive/2.7.1a.tar.gz
```

2. Unzip.

```
1 $ tar -zxf STAR-2.7.1a.tar.gz
```

To run STAR:

```
1 $ ./bin/Linux_x86_64_static/STAR
```

#### UCSC tools aka Kent tools

1. Figure out which operating system version you have

```
ı suname -a
```

2. Download the already compiled binaries from the corresponding folder (shown here for the Linux server) and make them executable. The programs indicated here are the ones most commonly used for typical NGS analyses, but feel free to download more (or fewer) tools.

```
$ mkdir UCSCtools
$ cd UCSCtools
$ for PROGRAM in bedGraphToBigWig bedClip bigWigAverageOverBed
    bigWigCorrelate bigWigInfo bigWigSummary faToTwoBit fetchChromSizes
    genePredToBed gff3ToGenePred liftOver wigToBigWig
do
```

```
wget http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/${PROGRAM}
chmod +x ${PROGRAM}
done
```

### featureCounts (subread package)

1. Download.

```
$ wget --no-check-certificate https://sourceforge.net/projects/subread/
files/subread-1.6.4/subread-1.6.4-Linux-x86_64.tar.gz
```

2. Unzip.

```
star -zxf subread-1.6.4-Linux-x86_64.tar.gz
```

#### $\mathbf{R}$

1. Download.

```
$ wget --no-check-certificate https://cran.r-project.org/src/base/R-3/R
-3.4.3.tar.gz
```

2. Unzip.

```
1 star zxvf R-3.4.3.tar.gz
```

3. Compile. You can use the **--prefix** option to specify the folder where you would like to install the program.

```
$ cd R-3.4.3
$ ./configure --prefix=<path to folder of choice>
$ make
4 make install
```

# References

- Alhamdoosh M, Ng M, Wilson NJ, Sheridan JM, Huynh H, Wilson MJ, and Ritchie ME. Combining multiple tools outperforms individual methods in gene set enrichment analyses. *Bioinformatics (Oxford, England)*, 2017. doi:10.1093/bioinformatics/btw623.
- Altman N and Krzywinski M. Points of significance: Sources of variation. *Nature Methods*, **12**(1):5–6, 2014. doi:10.1038/nmeth.3224.
- Anders S and Huber W. DESeq: Differential expression analysis for sequence count data. *Genome Biology*, 11:R106, 2010. doi:10.1186/gb-2010-11-10-r106.
- Anders S, Pyl PT, and Huber W. HTSeq A Python framework to work with high-throughput sequencing data. *Bioinformatics*, **31**(2):166–169, 2014. doi:10.1093/bioinformatics/btu638.
- Anders S, Reyes A, and Huber W. Detecting differential usage of exons from RNA-seq data. *Genome Research*, **22**(10):2008–2017, 2012. doi:10.1101/gr.133744.111.
- Auer PL and Doerge RW. Statistical design and analysis of RNA sequencing data. *Genetics*, **185**(2):405–16, 2010. doi:10.1534/genetics.110.114983.
- Ballouz S, Dobin A, Gingeras TR, and Gillis J. The fractured landscape of RNA-seq alignment: the default in our STARs. *Nucleic Acids Research*, 2018. doi:10.1093/nar/gky325.
- Benjamini Y and Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Research, 40(10):e72, 2012. doi:10.1093/nar/gks001.
- Bernstein MN, Doan A, and Dewey CN. MetaSRA: Normalized human sample-specific metadata for the Sequence Read Archive. *Bioinformatics*, 2017. doi:10.1093/bioinformatics/btx334.
- Blainey P, Krzywinski M, and Altman N. Points of Significance: Replication. *Nature Methods*, **11**(9):879–880, 2014. doi:10.1038/nmeth.3091.
- Boone M, De Koker A, and Callewaert N. Survey and summary capturing the 'ome': The expanding molecular toolbox for RNA and DNA library construction. *Nucleic Acids Research*, **46**(6):2701–2721, 2018. doi:10.1093/nar/gky167.
- Bourgon R, Gentleman R, and Huber W. Independent filtering increases detection power for high-throughput experiments. *PNAS*, **107**(21):9546–9551, 2010. doi:10.1073/pnas.0914005107.
- Bray NL, Pimentel H, Melsted P, and Pachter L. Near-optimal probabilistic RNA-seq quantification. *Nat Biotech*, **34**(5):525–527, 2016. doi:10.1038/nbt.3519.
- Bullard JH, Purdom E, Hansen KD, and Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. *BMC Bioinformatics*, **11**:94, 2010. doi:10.1186/1471-2105-11-94.
- Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, and Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. *Nature Reviews Genetics*, **17**(5):257–271, 2016. doi:10.1038/nrg.2016.10.
- Cathala G, Savouret JF, Mendez B, West BL, Karin M, Martial JA, and Baxter JD. A method for isolation of intact, translationally active ribonucleic acid. *DNA*, **2**(4):329–335, 1983. doi:10.1089/dna.1983.2.329.
- Ching T, Huang S, and Garmire LX. Power analysis and sample size estimation for RNA-Seq differential expression. RNA, pp. rna.046011.114-, 2014. doi:10.1261/rna.046011.114.
- Costa-Silva J, Domingues D, and Lopes FM. RNA-Seq differential expression analysis: An extended review and a software tool. *PLoS ONE*, **12**(12), 2017. doi:10.1371/journal.pone.0190152.
- Dapas M, Kandpal M, Bi Y, and Davuluri RV. Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms. *Briefings in Bioinformatics*, (Oct 2015), 2016. doi:10.1093/bib/bbw016.
- Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot NS, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Le Gall C, Schaëffer B, Le Crom S, Guedj M, and Jaffrézic F. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. *Briefings in Bioinformatics*, 14(6):671–683, 2013. doi:10.1093/bib/bbs046.
- Ding L, Rath E, and Bai Y. Comparison of Alternative Splicing Junction Detection Tools Using RNASeq Data. *Current Genomics*, 2017. doi:10.2174/1389202918666170215125048.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gin-

- geras TR. STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics*, **29**(1):15–21, 2013. doi: 10.1093/bioinformatics/bts635.
- Dobin A and Gingeras TR. Optimizing RNA-seq mapping with STAR. In *Methods in Molecular Biology*, vol. 1415, pp. 245–262. Humana Press, New York, NY, 2016. doi:10.1007/978-1-4939-3572-7\_13.
- ENCODE. Standards, Guidelines and Best Practices for RNA-Seq, 2011. URL https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE\_RNAseq\_Standards\_V1.0.pdf.
- Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, Goldman N, Hubbard TJ, Harrow J, Guigó R, and Bertone P. Systematic evaluation of spliced alignment programs for RNA-seq data. *Nature Methods*, **10**(12):1185–1191, 2013. doi:10.1038/nmeth.2722.
- Everaert C, Luypaert M, Maag JL, Cheng QX, DInger ME, Hellemans J, and Mestdagh P. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. *Scientific Reports*, 7(1), 2017. doi:10.1038/s41598-017-01617-3.
- Ewels P, Magnusson M, Lundin S, and Kller M. Multiqc: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*, **32**(19):3047, 2016. doi:10.1093/bioinformatics/btw354.
- Farrell R. RNA methodologies laboratory guide for isolation and characterization. Elsevier/Academic Press, Amsterdam Boston, 2010.
- Feng H, Zhang X, and Zhang C. mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data. *Nature Communications*, **6**(May):7816, 2015. doi:10. 1038/ncomms8816.
- Genohub. Depth of Coverage (RNA), 2015. URL https://genohub.com/next-generation-sequencing-guide/#depth2.
- Germain PL, Vitriolo A, Adamo A, Laise P, Das V, and Testa G. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods. *Nucleic Acids Research*, 44(11), 2016. doi:10.1093/nar/gkw448.
- Gibbons FD and Roth FP. Judging the quality of gene expression-based clustering methods using gene annotation. *Genome Research*, **12**(10):1574–1581, 2002. doi:10.1101/gr.397002.
- Gierliński M, Cole C, Schofield P, Schurch NJ, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson G, Owen-Hughes T, Blaxter M, and Barton GJ. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment. *Bioinformatics*, **31**(22):1–15, 2015. doi:10.1093/bioinformatics/btv425.
- Goodwin S, Mcpherson JD, and Mccombie WR. Coming of age: ten years of next-generation sequencing technologies. *Nature Genetics*, **17**(6):333–351, 2016. doi:10.1038/nrg.2016.49.
- Griffith M, Walker JR, Spies NC, Ainscough BJ, and Griffith OL. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. *PLoS Computational Biology*, **11**(8), 2015. doi:10.1371/journal.pcbi. 1004393.
- Gu Z, Eils R, and Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics*, 2016. doi:10.1093/bioinformatics/btw313.
- Hansen KD, Brenner SE, and Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. *Nucleic Acids Research*, 2010. doi:10.1093/nar/gkq224.
- Hartley SW and Mullikin JC. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. *BMC Bioinformatics*, **16**(1):224, 2015. doi:10.1186/s12859-015-0670-5.
- Head SR, Kiyomi Komori H, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, and Ordoukhanian P. Library construction for next-generation sequencing: Overviews and challenges. *BioTechniques*, **56**(2):61–77, 2014. doi:10.2144/000114133.
- Honaas LA, Altman NS, and Krzywinski M. Study design for sequencing studies. In *Methods in Molecular Biology*, vol. 1418, pp. 39–66, 2016. doi:10.1007/978-1-4939-3578-9\_3.
- Hooper JE. A survey of software for genome-wide discovery of differential splicing in RNA-Seq data. *Human Genomics*, 2014. doi:10.1186/1479-7364-8-3.
- Illumina. RNA-Seq Data Comparison with Gene Expression Microarrays, 2011. URL http://www.europeanpharmaceuticalreview.com/wp-content/uploads/Illumina\_whitepaper.pdf.
- Jänes J, Hu F, Lewin A, and Turro E. A comparative study of RNA-seq analysis strategies. *Briefings in Bioinformatics*, (January):1–9, 2015. doi:10.1093/bib/bbv007.
- Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, and Oliver B. Synthetic spike-in standards for RNA-seq experiments. *Genome Research*, **21**(9):1543–1551, 2011. doi:10.1101/gr.121095.111.

- Kanehisa M, Furumichi M, Tanabe M, Sato Y, and Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Research*, 2017. doi:10.1093/nar/gkw1092.
- Kanitz A, Gypas F, Gruber AJ, Gruber AR, Martin G, and Zavolan M. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. *Genome Biology*, **16**(1), 2015. doi:10.1186/s13059-015-0702-5.
- Karimpour-Fard A, Epperson LE, and Hunter LE. A survey of computational tools for downstream analysis of proteomic and other omic datasets. *Human Genomics*, **9**(28), 2015. doi:10.1186/s40246-015-0050-2.
- Katz Y, Wang ET, Airoldi EM, and Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. *Nature Methods*, **7**(12):1009–1015, 2010. doi:10.1038/nmeth.1528.
- Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Thorvaldsdóttir H, Robinson JT, Mesirov JP, Airoldi EM, and Burge CB. Quantitative visualization of alternative exon expression from RNA-seq data. *Bioinformatics (Oxford, England)*, 2015. doi:10.1093/bioinformatics/btv034.
- Khatri P, Sirota M, and Butte AJ. Ten years of pathway analysis: Current approaches and outstanding challenges. *PLoS Computational Biology*, 2012. doi:10.1371/journal.pcbi.1002375.
- Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, and Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biology*, **14**(4):R36, 2013. doi:10.1186/gb-2013-14-4-r36.
- Kundaje A. A comprehensive collection of signal artifact blacklist regions in the human genome. Tech. rep., 2013. URL https://sites.google.com/site/anshulkundaje/projects/blacklists.
- Law CW, Chen Y, Shi W, and Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biology*, **15**:R29, 2014. doi:10.1186/gb-2014-15-2-r29.
- Leinonen R, Sugawara H, and Shumway M. The sequence read archive. *Nucleic Acids Research*, 2011. doi:10.1093/nar/gkq1019.
- Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, and Regev A. Comprehensive comparative analysis of strand-specific RNA sequencing methods. *Nature Methods*, **7**(9):709–715, 2010. doi:10.1038/nmeth.1491.
- Li B and Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics*, **12**(1):323, 2011. doi:10.1186/1471-2105-12-323.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin R. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, **25**(16):2078–9, 2009. doi: 10.1093/bioinformatics/btp352.
- Li S, Labaj PP, Zumbo P, Sykacek P, Shi W, Shi L, Phan J, Wu PY, Wang M, Wang C, Thierry-Mieg D, Thierry-Mieg J, Kreil DP, and Mason CE. Detecting and correcting systematic variation in large-scale RNA sequencing data. *Nat Biotech*, **32**(9):888–895, 2014. doi:10.1038/nbt.3000.
- Liao Y, Smyth GK, and Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*, **30**(7):923–30, 2014. doi:10.1093/bioinformatics/btt656.
- Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, and Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. *Cell Systems*, 2015.
- Liu Y, Zhou J, and White KP. RNA-seq differential expression studies: more sequence or more replication? *Bioinformatics*, **30**(3):301–4, 2014. doi:10.1093/bioinformatics/btt688.
- Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, **15**(12):550, 2014. doi:10.1186/s13059-014-0550-8.
- Lowe R, Shirley N, Bleackley M, Dolan S, and Shafee T. Transcriptomics technologies. *PLoS Computational Biology*, 2017. doi:10.1371/journal.pcbi.1005457.
- Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, and Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. *Briefings in Bioinformatics*, **17**(4):628–641, 2016. doi:10.1093/bib/bbv108.
- Mudge JM and Harrow J. The state of play in higher eukaryote gene annotation. *Nature Reviews Genetics*, 2016. doi:10.1038/nrg.2016.119.
- Munro SA, Lund SP, Pine PS, Binder H, Clevert DA, Conesa A, Dopazo J, Fasold M, Hochreiter S, Hong H, Jafari N, Kreil DP, Łabaj PP, Li S, Liao Y, Lin SM, Meehan J, Mason CE, Santoyo-Lopez J, Setterquist RA, Shi L, Shi W, Smyth GK, Stralis-Pavese N, Su Z, Tong W, Wang C, Wang J, Xu J, Ye Z, Yang Y, Yu Y, Salit M, Labaj PP, Li S, Liao Y, Lin SM, Meehan J, Mason CE, Santoyo-Lopez J, Setterquist RA,

- Shi L, Shi W, Smyth GK, Stralis-Pavese N, Su Z, Tong W, Wang C, Wang J, Xu J, Ye Z, Yang Y, Yu Y, and Salit M. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. *Nature Communications*, **5**:5125, 2014. doi:10.1038/ncomms6125. URL http://www.bioconductor.org/packages/release/bioc/vignettes/erccdashboard/inst/doc/erccdashboard.pdf.
- Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, and Nielsen J. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: A case study in Saccharomyces cerevisiae. *Nucleic Acids Research*, 40(20):10084–10097, 2012. doi:10.1093/nar/gks804.
- NuGEN. Detection of Genomic DNA in Human RNA Samples for RNA-Seq, 2013. URL http://www.nugen.com/sites/default/files/M01355\_v1-TechnicalReport, DetectionofGenomicDNAinHumanRNASamplesforRNA-Seq.pdf.
- Oshlack A and Wakefield MJ. Transcript length bias in RNA-seq data confounds systems biology. *Biology Direct*, 4:14, 2009. doi:10.1186/1745-6150-4-14.
- O'Sullivan C, Busby B, and Karsch Mizrachi I. Managing Sequence Data. In Keith JM, (editor) *Bioinformatics: Data, Sequence Analysis, and Evolution*, vol. 1, chap. 4, pp. 79–106. Springer Science+Business Media, New York, 2018. doi:10.1007/978-1-4939-6622-6\_4.
- Patro R, Duggal G, Love MI, Irizarry RA, and Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. *Nature Methods*, **14**(4):417–419, 2017. doi:10.1038/nmeth.4197.
- Patro R, Mount SM, and Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. *Nature Biotechnology*, **32**(5):462–464, 2014. doi:10.1038/nbt.2862.
- Pimentel HJ. RNA-Seq Methods and Algorithms (Part III Quantification), . URL https://www.youtube.com/watch?v=ztyjiCCt\_lM.
- Pimentel HJ, Bray N, Puente S, Melsted P, and Pachter L. Differential analysis of RNA-Seq incorporating quantification uncertainty. bioRxiv, p. 058164, 2016. doi:10.1101/058164.
- Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, and Betel D. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. *Genome Biology*, 14(9):R95, 2013. doi:10.1186/gb-2013-14-9-r95.
- Reinert K, Langmead B, Weese D, and Evers DJ. Alignment of Next-Generation Sequencing Reads. *Annual Review of Genomics and Human Genetics*, 2015. doi:10.1146/annurev-genom-090413-025358.
- Risso D, Ngai J, Speed TP, and Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. *Nature Biotechnology*, pp. 1–10, 2014. doi:10.1038/nbt.2931.
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research*, **43**(7):e47–, 2015. doi: 10.1093/nar/gkv007.
- Roberts A and Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments.  $Nature\ Methods,\ \mathbf{10}(1):71-73,\ 2013.\ doi:10.1038/nmeth.2251.$
- Robinson MD, McCarthy DJ, and Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, **26**(1), 2010. doi:10.1093/bioinformatics/btp616.
- Robinson MD and Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biology*, **11**(3):R25, 2010. doi:10.1186/gb-2010-11-3-r25.
- Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson GG, Owen-Hughes T, Blaxter M, and Barton GJ. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? *RNA*, pp. 1–13, 2016. doi:10.1261/rna. 053959.115.
- Schurch NJ, Schofield P, Gierliński M, Cole C, Simpson GG, Hughes TO, Blaxter M, and Barton GJ. Evaluation of tools for differential gene expression analysis by RNA-seq on a 48 biological replicate experiment. ArXiv e-prints, 2015. URL http://arxiv.org/abs/1505.02017.
- Seyednasrollah F, Laiho A, and Elo LL. Comparison of software packages for detecting differential expression in RNA-seq studies. *Briefings in Bioinformatics*, **16**(1):59–70, 2015. doi:10.1093/bib/bbt086.
- Shanker S, Paulson A, Edenberg HJ, Peak A, Perera A, Alekseyev YO, Beckloff N, Bivens NJ, Donnelly R, Gillaspy AF, Grove D, Gu W, Jafari N, Kerley-Hamilton JS, Lyons RH, Tepper C, and Nicolet CM. Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input

- amounts of total RNA. Journal of Biomolecular Techniques, 2015. doi:10.7171/jbt.15-2601-001.
- Shen S, Park JW, Lu Zx, Lin L, Henry MD, Wu YN, Zhou Q, and Xing Y. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. *PNAS*, 2014. doi:10.1073/pnas. 1419161111.
- Sims D, Sudbery I, Ilott NE, Heger A, and Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. *Nature Reviews Genetics*, **15**(2):121–32, 2014. doi:10.1038/nrg3642.
- Smith TF and Waterman MS. Comparison of biosequences. Advances in Applied Mathematics, 1981. doi: 10.1016/0196-8858(81)90046-4.
- Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology*, **3**, 2004. doi:10.2202/1544-6115. 1027.
- Soneson C and Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14(1):91, 2013. doi:10.1186/1471-2105-14-91.
- Soneson C, Love MI, and Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research, 4(0):1521, 2015. doi:10.12688/f1000research.7563.2.
- Soneson C, Matthes KL, Nowicka M, Law CW, and Robinson MD. Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. *Genome Biology*, **17**(1):12, 2016. doi: 10.1186/s13059-015-0862-3.
- Srivastava A, Malik L, Sarkar H, Zakeri M, Soneson C, Love MI, Kingsford C, and Patro R. Alignment and mapping methodology influence transcript abundance estimation. *bioRxiv*, 2019. doi:10.1101/657874.
- Su Z, Labaj PP, Li SS, Thierry-Mieg J, Thierry-Mieg D, Shi W, Wang C, Schroth GP, Setterquist Ra, Thompson JF, Jones WD, Xiao W, Xu W, Jensen RV, Kelly R, Xu J, Conesa A, Furlanello C, Gao HH, Hong H, Jafari N, Letovsky S, Liao Y, Lu F, Oakeley EJ, Peng Z, Praul CA, Santoyo-Lopez J, Scherer A, Shi T, Smyth GK, Staedtler F, Sykacek P, Tan XX, Thompson EA, Vandesompele J, Wang MD, Wang JJJ, Wolfinger RD, Zavadil J, Auerbach SS, Bao W, Binder H, Blomquist T, Brilliant MH, Bushel PR, Cai W, Catalano JG, Chang CW, Chen T, Chen G, Chen R, Chierici M, Chu TM, Clevert DA, Deng Y, Derti A, Devanarayan V, Dong Z, Dopazo J, Du T, Fang H, Fang Y, Fasold M, Fernandez A, Fischer M, Furió-Tari P, Fuscoe JC, Caimet F, Gaj S, Gandara J, Gao HH, Ge W, Gondo Y, Gong B, Gong M, Gong Z, Green B, Guo C, Guo LWL, Guo LWL, Hadfield J, Hellemans J, Hochreiter S, Jia M, Jian M, Johnson CD, Kay S, Kleinjans J, Lababidi S, Levy S, Li QZ, Li L, Li P, Li Y, Li H, Li J, Li SS, Lin SM, López FJ, Lu X, Luo H, Ma X, Meehan J, Megherbi DB, Mei N, Mu B, Ning B, Pandey A, Pérez-Florido J, Perkins RG, Peters R, Phan JH, Pirooznia M, Qian F, Qing T, Rainbow L, Rocca-Serra P, Sambourg L, Sansone SA, Schwartz S, Shah R, Shen J, Smith TM, Stegle O, Stralis-Pavese N, Stupka E, Suzuki Y, Szkotnicki LT, Tinning M, Tu B, van Delft J, Vela-Boza A, Venturini E, Walker SJ, Wan L, Wang W, Wang JJJ, Wang JJJ, Wieben ED, Willey JC, Wu PY, Xuan J, Yang Y, Ye Z, Yin Y, Yu Y, Yuan YC, Zhang J, Zhang KK, Zhang WW, Zhang WW, Zhang Y, Zhao C, Zheng Y, Zhou Y, Zumbo P, Tong W, Kreil DP, Mason CE, and Shi L. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotech, 32(9):903-14, 2014. doi:10.1038/nbt.2957.
- Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, Balzereit D, Lehrach H, and Yaspo ML. Influence of RNA extraction methods and library selection schemes on RNA-seq data. *BMC Genomics*, **15**(1):675, 2014. doi:10.1186/1471-2164-15-675.
- Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, and Von Mering C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Research*, 2017. doi:10.1093/nar/gkw937.
- 't Hoen PAC, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I, Anvar SY, Laros JFJ, Buermans HPJ, Karlberg O, Brännvall M, The GEUVADIS Consortium, den Dunnen JT, van Ommen GJB, Gut IG, Guigó R, Estivill X, Syvänen AC, Dermitzakis ET, and Lappalainen T. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. *Nat Biotech*, **31**(11):1015–1022, 2013. doi:10.1038/nbt.2702.
- Teng M, Love MI, Davis CA, Djebali S, Dobin A, Graveley BR, Li S, Mason CE, Olson S, Pervouchine D, Sloan CA, Wei X, Zhan L, and Irizarry RA. A benchmark for RNA-seq quantification pipelines. *Genome Biology*, 17(1), 2016. doi:10.1186/s13059-016-0940-1.
- The SAM/BAM Format Specification Working Group. Sequence alignment/map format specification, 2019.

- URL https://github.com/samtools/hts-specs.
- Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, and Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. *Nat Biotech*, **31**(1):46–53, 2013. doi:10.1038/nbt.2450.
- Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, and Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature Protocols*, **7**(3):562–78, 2012. doi:10.1038/nprot.2012.016.
- Van den Berge K, Hembach KM, Soneson C, Tiberi S, Clement L, Love MI, Patro R, and Robinson MD. RNA Sequencing Data: Hitchhiker's Guide to Expression Analysis. *Annual Review of Biomedical Data Science*, 2019. doi:10.1146/annurev-biodatasci-072018-021255.
- Wagner GP, Kin K, and Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. *Theory in Biosciences*, **131**(4):281–285, 2012. doi:10.1007/s12064-012-0162-3.
- Wang L, Wang S, and Li W. RSeQC: Quality control of RNA-seq experiments. *Bioinformatics*, **28**(16):2184–2185, 2012. doi:10.1093/bioinformatics/bts356.
- Williams CR, Baccarella A, Parrish JZ, and Kim CC. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq. *BMC Bioinformatics*, **18**(1), 2017. doi:10.1186/s12859-016-1457-z.
- Wu DC, Yao J, Ho KS, Lambowitz AM, and Wilke CO. Limitations of alignment-free tools in total RNA-seq quantification. *BMC genomics*, 2018. doi:10.1186/s12864-018-4869-5.
- Yandell M and Ence D. A beginner's guide to eukaryotic genome annotation. *Nature Reviews Genetics*, 2012. doi:10.1038/nrg3174.
- Ye H, Meehan J, Tong W, and Hong H. Alignment of short reads: A crucial step for application of next-generation sequencing data in precision medicine. *Pharmaceutics*, 2015. doi:10.3390/pharmaceutics7040523.
- Yeri A, Courtright A, Danielson K, Hutchins E, Alsop E, Carlson E, Hsieh M, Ziegler O, Das A, Shah RV, Rozowsky J, Das S, and Van Keuren-Jensen K. Evaluation of commercially available small RNASeq library preparation kits using low input RNA. *BMC Genomics*, 2018. doi:10.1186/s12864-018-4726-6.
- Yona G, Dirks W, and Rahman S. Comparing algorithms for clustering of expression data: how to assess gene clusters. *Methods Mol Biol*, **541**:479–509, 2009. doi:10.1007/978-1-59745-243-4\_21.
- Young MD, Wakefield MJ, Smyth GK, and Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology*, 2010. doi:10.1186/gb-2010-11-2-r14.
- Zeng W and Mortazavi A. Technical considerations for functional sequencing assays. *Nature Immunology*, **13**(9):802–807, 2012. doi:10.1038/ni.2407.
- Zhao S, Fung-Leung WP, Bittner A, Ngo K, and Liu X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. *PLoS ONE*, **9**(1), 2014. doi:10.1371/journal.pone.0078644.
- Zhao S and Zhang B. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. *BMC Genomics*, 2015. doi:10.1186/s12864-015-1308-8.
- Zhou X and Rokas A. Prevention, diagnosis and treatment of high-throughput sequencing data pathologies. *Molecular Ecology*, **23**(7):1679–1700, 2014. doi:10.1111/mec.12680.
- Zielezinski A, Vinga S, Almeida J, and Karlowski WM. Alignment-free sequence comparison: Benefits, applications, and tools. *Genome Biology*, 2017. doi:10.1186/s13059-017-1319-7.