Evolutionary Theory and Principles of Phylogenetics

Lucy Skrabanek
ICB, WMC
February 25, 2010
Theory of evolution

• Evolution: process of change over time
 – 2 main competing models
 • Phyletic gradualism
 • Punctuated equilibrium

• Phyletic gradualism
 – Gradual process

• Punctuated equilibrium
 – Long periods of stasis (little change) interspersed with revolutions (short bursts of rapid change)

• Punctuated gradualism
• Three major aspects to the theory of evolution
 – Common descent: All organisms descended from a single ancestor (or ancestral gene pool)
 – Mutation: Manifestation of novel traits in a lineage
 – Mechanisms that cause some traits to persist, while others perish
Ancestry of organisms

• Traits shared between organisms
 – Morphological
 • Fossils
 – Genetic
 • All organisms have DNA/RNA as their genetic material
 • All organisms use the same genetic code (with some small variations)
 • Sequence similarity between phylogenetically close organisms
Novel traits by mutations

- Evolution is the process by which novel traits arise in populations and **are passed on** from generation to generation.

- Mutations are permanent changes to the genetic material
 - Germline: can be passed on to the next generation
 - Somatic cells: affect a single cell only

- “Driving force” of evolution
 - Create new alleles

- Gene duplication
 - Introduce new genes
Types of mutation

Micromutation
local base changes: substitutions, insertions, deletions

Macromutation

Heterozygosity

- Diploid nuclei have two alleles at every locus on homologous chromosomes (one on each chromosome)
- Homozygous: the two alleles are the same
- Heterozygous: the two alleles are different
- Heterozygosity: the state of being a heterozygote
- Heterozygosity (population genetics): the fraction of individuals in a population that are heterozygous at a particular locus
Linkage

• Alleles nearby on a chromosome tend to be propagated together
 – Measured by the co-occurrence of two alleles (linkage disequilibrium; LD)
 – A set of alleles commonly co-propagated are called a haplotype

• Recombination during meiosis may separate previously linked alleles
 – Allows mutations to be propagated independently
 – Allows unfavorable mutations to disappear from the population, and favorable mutations to be fixed more easily
 – Depends on how close the alleles are on the same chromosome
Survival of novel traits

• Natural selection
 – Differential survival and reproduction rates

• Genetic drift
 – Random fluctuations in genetic material
 (not selection-driven)

• Gene flow
 – Exchange of genetic material by interbreeding and migration
Natural selection

- Based on the fitness of an individual in a particular environment
- Organisms that survive and reproduce pass on their genetic material with greater frequency than those that do not survive
- Organisms that are more “attractive” reproduce more
- Consequences
 - Eliminates deleterious mutations
 - Increases frequency of beneficial mutations
 - Maintains variation in a population
 - Heterozygote advantage (e.g., sickle-cell anemia, cystic fibrosis)
 - Frequency-dependent selection (rare alleles have higher fitness; as they become more common, their fitness decreases)
Genetic drift

• Under the Neutral Theory of Evolution (Kimura)
 – Given a population of two equally fit states, over time one state will become extinct

• Genetic drift: describes the changes in allele frequency from one generation to the next due to sampling variance.
 – The frequency of an allele in a population will vary according to the probability distribution of the frequency of the allele in the parent generation
 – Over time, allele frequencies will tend to increase or decrease, eventually going to 0% or 100%
Genetic drift contd

- Fluctuations in allele frequency between generations may result in some alleles disappearing from the population
- At large population sizes, the number of generations needed for either allele to become ‘fixed’ is 2N (N = population size)
- More important in small populations, since chance fluctuations between generations can make a bigger difference
Gene flow

• (Also called *admixture* or *migration*)
• Transfer of genetic material from one population to another
 – Migration of populations
• Effect:
 – Two populations become genetically more similar, while increasing their variation
• Speciation occurs when gene flow is impeded by non-geographic obstacles
• Interspecies transfer
 – Gene transfer: Moving genetic material across species boundaries (e.g., horizontal gene transfer)
Functional restraint

• Genes whose products are essential to survival pick up mutations very slowly

• Different regions of the genome accumulate changes at very different rates
 – Reflect the extent to which they are functionally constrained
Synonymous vs. nonsynonymous

• **Synonymous:**
 – \(K_s \): rate of synonymous substitution
 – Mutations which do **not** change the coding sequence
 – Usually at the third site in the codon
 – \(K_s \) tends to reflect the actual substitution rate

• **Nonsynonymous:**
 – \(K_a \): rate of nonsynonymous substitution
 – Mutations which change the coding sequence
 – Under natural selection
 – \(K_a \) is much more variable than \(K_s \)
 – \(K_a \) usually much lower than \(K_s \)
What is phylogenetics?

Visualize relationships among objects

Li and Graur, 1997

Species tree

Gene tree

NCBI
Phylogenetics - beyond the obvious

Maximum parsimony tree of 12S and 16S rRNA genes

Stanhope et al, MPE, 1998
Uses

- Gene family identification
- Inferring gene function
- Identifying origins of genetic disease
- Characterization of polymorphisms
Simple example

- Seq1: AGA
- Seq2: AGG
- Seq3: TGA
- Seq4: TGG

Possible number of unrooted trees: \((2n - 5)!! = 3 \times 5 \times \ldots \times (2n-5)\)
Possible number of rooted trees: \((2n - 3)!!\)
Some terminology

• Tree, topology
 – Root
 – Branches
 – Nodes
• Rooted versus unrooted
 – outgroup
• Homologs
 – Orthologs
 – Paralogs
 – Xenologs
• Homoplasy
 – Convergence
 – Parallelism
 – Reversal
Orthologs vs. paralogs
But... bacterial evolution

- Lateral or horizontal gene transfer

- How does the mechanism of lateral gene transfer affect the concept of a tree of life, and the concept of prokaryote species?
Buzzword central:
(how to sound as if you know what you’re talking about)

• OTU = operational taxonomic unit
• UPGMA = unweighted pair group method using arithmetic mean
• FM = Fitch Margoliash
• NJ = neighbor joining
• ME = minimum evolution
• MP = maximum parsimony
• ML = maximum likelihood
• JC = Jukes Cantor
• K2P = K80 = Kimura 2-parameter
• JTT = Jones, Taylor, Thornton matrix
How to sound as if you know what you’re talking about

MY HOBBY:
SITTING DOWN WITH GRAD STUDENTS AND TIMING
HOW LONG IT TAKES THEM TO FIGURE OUT THAT
I’M NOT ACTUALLY AN EXPERT IN THEIR FIELD.

ENGINEERING:
OUR BIG PROBLEM
IS HEAT DISSIPATION
HAVE YOU TRIED
LOGARITHMS?

LINGUISTICS:
AH, SO DOES THIS FINNO-
UGRIC FAMILY INCLUDE,
SAY, KLINGON?

SOCIOLOGY:
YEAH, MY LATEST WORK
IS ON RANKING PEOPLE
FROM BEST TO WORST.

LITERARY CRITICISM:
YOU SEE, THE DECONSTRUCTION
IS INEXTRICABLE FROM NOT ONLY
THE TEXT, BUT ALSO THE SELF.

48 SECONDS
63 SECONDS
4 MINUTES

http://www.xkcd.org
Approaches

• Distance-based methods
 – UPGMA
 – Fitch-Margoliash
 – Neighbor-joining

• Sequence-based methods
 – Maximum parsimony
 – Maximum likelihood

• Bayesian methods
UPGMA
(Unweighted Pair Group Method using Arithmetic mean)

• Construct a distance matrix
 – Genetic
 – Biochemical
 – Morphological

• Correct for multiple substitutions
 – Jukes-Cantor
 – Kimura

• Assumes a molecular clock

<table>
<thead>
<tr>
<th>OTU</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>d_{AB}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>d_{AC}</td>
<td>d_{BC}</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>d_{AD}</td>
<td>d_{BD}</td>
<td>d_{CD}</td>
</tr>
</tbody>
</table>
Distance calculations

• Hamming distance: count number of mismatches between pairs of sequences

<table>
<thead>
<tr>
<th>Species</th>
<th>Human/cow</th>
<th>Human/rat</th>
<th>Cow/rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of mismatches</td>
<td>6</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>
Percent difference

• Count fraction of sites where aligned sequences differ

<table>
<thead>
<tr>
<th>Species</th>
<th>Human/cow</th>
<th>Human/rat</th>
<th>Cow/rat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction of different sites</td>
<td>6/40 = 0.15</td>
<td>9/40 = 0.225</td>
</tr>
</tbody>
</table>

Human PPY atgggctgcccgcacgcctctgcctctcccttgctgctcctgt
Cow PPY atgggctgcccgcgcaccgcgtgcctccttcttgctccttctgt
Rat PPY atgggcgtcgcatatactactgctccttcctctgtttctcctat
Similarity score

• Another method: convert a similarity score (e.g., from Smith-Waterman) into a distance score
 – Shuffle sequences, align and score
 • Do this many times and get an average score for unrelated sequences
 – Align sequences to themselves
 • Average the two self-assigned scores (for each pairwise comparison), and get a maximum score
 – Normalized similarity score:
 • Score = \(\frac{S_{\text{actual}} - S_{\text{random}}}{S_{\text{max}} - S_{\text{random}}} \)

• How do we get the distance (or dissimilarity score) from the similarity score?
 – Hint! Dissimilarity \(\Box 1 - \text{Score} \)
Substitutions

- Expected number of substitutions is expected to follow the Poisson distribution
- The Poisson distribution is a discrete distribution
- Commonly used to model the number of random occurrences of some rare phenomenon in a specified unit of space or time

\[p(x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad \text{for } \lambda > 0 \quad \text{and } x = 0, 1, 2... \]

\[\lambda = \text{mean number of events per unit time} \]
\[x = \text{number of events} \]

http://astronomy.swin.edu.au/~pbourke/analysis/distributions/
Similarity → Dissimilarity

- Some substitutions in an alignment represent one change, some may be sequential changes.
- To account for possible multiple substitutions, use the Poisson distribution.
 - \([\lambda] \) = dissimilarity = mean number of substitutions.
 - From
 \[
 p(x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad \text{for} \quad \lambda > 0 \quad \text{and} \quad x = 0, 1, 2, \ldots
 \]
 - The probability of zero changes \(P(0) = e^{-\lambda} \).
 - Score (proportional to the probability of one or more changes) = \(1 - e^{-\lambda} \).
 - And taking the logs of both sides and rearranging \(\lambda = -\ln(1 - \text{Score}) \).
UPGMA

<table>
<thead>
<tr>
<th>OTU</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>0.6</td>
<td>0.66</td>
</tr>
</tbody>
</table>

\[
d_{(AB)C} = \frac{d_{AC} + d_{BC}}{2}
\]

\[
d_{(AB)D} = \frac{d_{AD} + d_{BD}}{2}
\]

<table>
<thead>
<tr>
<th>OTU</th>
<th>AB</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
<td>0.66</td>
</tr>
</tbody>
</table>

\[
d_{AB}/2 = 0.05
\]

\[
d_{(AB)C}/2 = 0.2
\]
d_{(ABC)D} = (d_{AD} + d_{BD} + d_{CD})/3

OTU	AB	C
C | 0.4 |
D | 0.6 | 0.66

A
B
C
D
Distance calculation corrections
(compensate for multiple substitutions and reversions)

• Jukes-Cantor model
 – There is the same probability of change at each sequence position, and once a position has been mutated, it is just as likely to change again

• Kimura two-parameter model
 – Takes into account that transitions should occur more often than transversions

• Kimura three-parameter model
 – Extends the two-parameter model to also distinguish between $A \xrightarrow{\text{?}} T / G \xrightarrow{\text{?}} C$ and $A \xrightarrow{\text{?}} C / G \xrightarrow{\text{?}} T$ transversions
Jukes-Cantor

- Simplest model of correction
 - There is the same probability of mutation at every position
 - Once a site has mutated, it still has the same probability that it did before of changing again
 - For equal base frequencies
 \[f_A = f_G = f_C = f_T \]

\[K_{AB} = -\frac{3}{4} \ln\left[1 - \frac{4}{3} d_{AB}\right] \]

- Unequal base frequencies

\[K_{AB} = -B \ln\left[1 - \frac{d_{AB}}{B}\right] \]

where \(B = 1 - (f_A^2 + f_G^2 + f_C^2 + f_T^2) \)

- e.g., 2 sequences of length 30, which differ by 3 sites, assuming equal base frequencies:
 \[d_{AB} = \frac{3}{30} = 0.1 \]
 \[K_{AB} = -\frac{3}{4} \ln\left[1 - \frac{4}{3} (0.1)\right] = 0.107 \]
Jukes Cantor derivation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>1-3</td>
<td></td>
</tr>
</tbody>
</table>

- **Assume rates of substitution between bases are equal, denoted by \Box**
- **Substitution rate = 3\Box**
- **Expected number of substitutions per site = 6\Box**

`P_{C1} = 1-3\Box`
`P_{C2} = (1-3\Box)P_{C1} + \Box [1-P_{C1}]`
`P_{Ct} = (1-3\Box)P_{Ct-1} + \Box [1-P_{Ct-1}]`

Approximate as a continuous time model and solve the first order linear differential equation

\[P_{c(t)} = \frac{1}{4} + \frac{3}{4} e^{-4\alpha t} \]

Probability that two seqs differ at a site:
\[P_{\text{diff}} = \frac{3}{4} (1 - e^{-8\alpha t}) \]

Rearranging:
\[\Box t = -1/8 \ln (1 - 4/3 P_{\text{diff}}) \]

Multiply both sides by 6:
\[P_{\text{sub}} = -3/4 \ln (1 - 4/3 P_{\text{diff}}) \]

Estimate expected number of observed substitutions by actual number (d_{AB}):
\[P_{\text{sub}} = -3/4 \ln (1 - 4/3 d_{AB}) \]

- $P_{\text{diff}} =$ expected number of observable substitutions
- $P_{\text{sub}} =$ expected number of actual substitutions per site

Probabilities of having C at time t given C as starting base, and not C as starting base, respectively
Kimura two-parameter model

- Assumes that transitions have a different frequency from transversions
- Assumes equal base frequencies
- Calculate proportion of transitions and transversions between the two sequences

\[a = \frac{1}{1 - 2d_{AB} \text{ts} - d_{AB} \text{tv}} \]

\[b = \frac{1}{1 - 2d_{AB} \text{tv}} \]

\[K_{AB} = \frac{1}{2} \ln(a) + \frac{1}{4} \ln(b) \]

e.g., 2 sequences of length 30, which differ by 3 sites (2 transitions, 1 transversion), assuming equal base frequencies:

- Non-corrected distance: \(d_{AB} = 3/30 = 0.1 \)
- Jukes-Cantor correction: \(K_{AB} = -3/4 \ln \left(1 - 4/3 \times 0.1\right) = 0.107 \)
- Kimura 2-parameter: \(K_{AB} = 1/2 \ln(1.2) + 1/4 \ln(1.07) = 0.108 \)
Distance correction

• The JC, K2P and K3P methods can also be used to correct protein distances

• Jukes-Cantor:

\[B = 1 - \sum (f_{aai})^2 \]

• K2P

\[K = -\ln (1 - D - 0.2 D^2) \]

\[D = \frac{\text{number of exact matches between the seqs}}{\text{total number matched residue in the alignment}} \]
A molecular clock?

• For a given protein, the rate of sequence evolution is approximately constant across lineages (Zuckerkandl and Pauling, 1965)

• Often used to estimate speciation events

• Relative rate test
 \[K_{AC} - K_{BC} \approx 0 \]
Fitch-Margoliash

- Weighted least squares method
- Find the most similar pair, group all other sequences and recalculate the distance from each sequence in the pair to the average of all the other sequences
- Solve algebraically:

\[\text{(Eq1)} \quad a + b = \text{distance between a and b} \]
\[\text{(Eq2)} \quad a + c = \text{distance between a and c} \]
\[\text{(Eq3)} \quad b + c = \text{distance between b and c} \]
\[\text{(Eq4)} \quad \text{Eq3} - \text{Eq2} = b + c - a - c = b - a \]
\[\text{Eq4} + \text{Eq1} = b - a + a - b = 2b \]
Divide result by 2 = \(b \)
And substituting into 1, get \(a \)
And then get \(c \) from either 2 or 3

- Group the pair and recalculate distance matrix as for UPGMA
- Repeat until all sequences have been put on the tree
Neighbor-joining

- Minimum evolution criterion
- Star decomposition method
- Start off with a star-shaped topology
- Create a modified distance matrix where the distance between each pair of nodes is adjusted based on their average divergence from all other nodes
NJ contd

• Link the least-distant pair of nodes
• Use the FM method to calculate the branch lengths of the chosen pair
• Group the pair, remove them from the matrix, adding their common ancestral node instead
 – Convert the common ancestor into a new terminal mode (the two terminal nodes are replaced by the common ancestral node)
• Calculate a new distance matrix
• Repeat until all sequences are in the tree
Maximum parsimony

- **Occam’s Razor**
 - The best tree is the one which requires the least number of substitutions
- Have to check every possible topology!

Entia non sunt multiplicanda praeter necessitatem
Pluralitas non est ponenda sine necessitate

- William of Occam (c. 1285-1349)
Maximum Parsimony method

Construct multiple alignment

Identify informative sites

Identify best topology for each informative site

Identify best topology overall

Sequences should be few and not too variable

Informative sites are not conserved and should have the same character in at least two sequences

Evaluate all topologies. Select the topology or topologies with the least number of changes (weighted versus traditional)

Select the topology or topologies with the least number of changes overall
Maximum Likelihood

- Similar to maximum parsimony
- Allows for introduction of distance correction methods such as JC or K2P
 - Usable for more diverse sequences than MP
- Assumes a model of evolution

<table>
<thead>
<tr>
<th>Base</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(-\mu (ap_{C} + bp_{G} + cp_{T}))</td>
<td>(\mu a p_{C})</td>
<td>(\mu b p_{G})</td>
<td>(\mu c p_{T})</td>
</tr>
<tr>
<td>C</td>
<td>(\mu g p_{A})</td>
<td>(-\mu (gp_{A} + dp_{G} + ep_{T}))</td>
<td>(\mu d p_{G})</td>
<td>(\mu e p_{T})</td>
</tr>
<tr>
<td>G</td>
<td>(\mu h p_{A})</td>
<td>(\mu j p_{C})</td>
<td>(-\mu (hp_{A} + jp_{C} + fp_{T}))</td>
<td>(\mu f p_{T})</td>
</tr>
<tr>
<td>T</td>
<td>(\mu i p_{A})</td>
<td>(\mu k p_{C})</td>
<td>(\mu l p_{G})</td>
<td>(-\mu (ip_{A} + kp_{C} + lp_{G}))</td>
</tr>
</tbody>
</table>

\[\mu\] = mutation rate (number of substitutions per unit of time)
\[a-l\] = frequency of change of one base to any other
\[\pi\] = base frequency
ML contd

• Start off with an alignment
• Substitutions in each column made into a tree
 – Probability of each tree is the product of the
 mutation rates in each branch (= product of rate
 of substitution in each branch by the branch
 length)
 – $L = p (\text{data} \mid \text{tree, branch lengths, model})$
 • All possible ways of getting the data are taken into
 account
• Logs of the likelihoods of each column in the
 alignment for each tree are added to give the
 likelihood for that tree for the whole alignment
Long branch attraction

• Happens for all methods except ML
• Occurs when sequences are very divergent
• Longer branches become artificially grouped because the number of **non-homologous similarities** between the sequences exceeds the number of homologous similarities that the sequences have retained with their true closest homologues
Bootstrapping

• For more divergent sequences, where an optimal alignment is not always obvious, where multiple changes may have taken place in any given column
• Randomly choose vertical columns from the aligned sequences to produce an alignment of the same length (some columns may be used more than once, some none at all)
• Redo analysis
• Repeat above two steps, usually 100 or 1000 times
• Branching topology should occur in at least >70% of the resampled trees to be considered significant (95% confidence)
Jack-knifing

• Similar to bootstrapping, except that some fraction of the aligned columns is taken, and no column can be sampled more than once in any given resampling

• The jack-knife value is the percentage of resampled alignments that give you back that internal branch
Bremer support index

- Also called:
 - Decay index
 - Branch support
 - Length difference
 - Decay analysis
- Estimates the reliability of phylogenetic groupings
- Usable with maximum parsimony only
- Example: The most parsimonious tree groups A, B and C together, and consists of 189 changes. The next most parsimonious tree that does not group A, B and C together has 214 changes. The Bremer support index for the grouping of A, B and C is 214-189=25
Method comparison

<table>
<thead>
<tr>
<th></th>
<th>UPGMA</th>
<th>NJ</th>
<th>MP</th>
<th>ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch lengths</td>
<td>Branch lengths (may be negative)</td>
<td>No branch lengths</td>
<td>Branch lengths</td>
<td></td>
</tr>
<tr>
<td>Rooted</td>
<td>Unrooted</td>
<td>Unrooted</td>
<td>Unrooted</td>
<td>Unrooted</td>
</tr>
<tr>
<td>Molecular clock</td>
<td>n/a</td>
<td>n/a</td>
<td>Explicit model of evolution</td>
<td></td>
</tr>
<tr>
<td>fast</td>
<td>fast</td>
<td>slow</td>
<td>slow</td>
<td></td>
</tr>
<tr>
<td>Bad with very divergent sequences</td>
<td>Bad with very divergent sequences</td>
<td>Good for closely related sequences</td>
<td>Can be used with any set of related sequences</td>
<td></td>
</tr>
<tr>
<td>Long branch attraction</td>
<td>Long branch attraction</td>
<td>Long branch attraction</td>
<td>Long branch attraction</td>
<td>n/a</td>
</tr>
<tr>
<td>Not really biologically meaningful</td>
<td>Very fast, pretty accurate</td>
<td>Quite accurate</td>
<td>Most accurate, very slow</td>
<td></td>
</tr>
</tbody>
</table>
When do I use what?

Multiple sequence alignment (CRITICAL STEP)

Strong sequence similarity?

Somewhat similar sequences?

Maximum parsimony

Distance methods

Maximum likelihood

Bootstrap

From Bioinformatics, Mount, p247
Outgroups

• Used to root trees
 – Root is where the outgroup connects to the rest of the tree

• Choice of outgroup
 – Should be any OTU not descended from the same common ancestor as the rest of the taxa in the tree, but should be closely related
 – Outgroups too closely related could be part of the tree
 – Outgroups too distantly related may not align well, or may be subject to long branch attraction
Warning!

• The trees that we construct are unlikely to exactly reflect reality
 – Unknown model of evolution
 – Variability in mutation rates
 • Between sites in the sequence
 • Between species used in the analysis
 • At different time points
 – Recombination or horizontal transfer may have occurred
Conservation genetics

Hybrid between grey wolf and coyote

Dusky seaside sparrow
(Ammodramus maritimus nigrescens)

Red wolf
HIV strains

- HIV-1
 - Chimpanzee

- HIV-2
 - sooty mangabey (eaten and/or kept as pets)
HIV-2

- Not as prevalent as HIV-1
- Seven subtypes (A - G)
 - A: Senegal and Guinea-Bissau
 - B, G: Ivory Coast
 - C, D, E, F: Sierra Leone and Liberia
- Subtypes more related to SIVsm strains found in each area than to other SIVsm strains
 - Different subtypes are the result of multiple independent cross-species transmissions
HIV-1

- HIV-1 is more diverse than HIV-2
 - 3 main groups - M, N, O
 - M (main/major)
 - 8 subtypes in group M
 - N (non-M/non-O)
 - O (outlier)
 - Chimpanzee subspecies: *Pan troglodytes troglodytes*
 - Estimate of origin of HIV-1 group M radiation ~ 1930
 - Subtypes of HIV similar to subtypes of SIVcpz
 - Origins of subtypes can be localized to specific parts of Africa
HIV-1 recombination

– Many recombinant forms
 • Leads to the possibility of already infected humans being infected with more distant subtypes of SIV, recombination occurring, and those ‘new’ strains of HIV spreading (N?)
 • Causes potential problems with live-attenuated virus vaccines
(also see Sharp et al, Phil Trans R Soc Lond, 2001)