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SIGNAL AND NOISE PROBLEMS
M. KAC, Cornell University

In this brief report I shall limit myself to a cursory discussion of several
problems chosen on grounds of personal predilection and with the view of show-
ing how “pure” and “applied” mathematics can intermingle with profit to both.

1. The problem of detection. This is a purely statistical problem which can
be formulated as follows: Let x(f) be a stationary random process (noise) and
s(¢) a signal. An observer receives a record y(f) which is either x(¢) or x(¢) +s(¢)
and is to decide whether the signal is present or not.

In the simplest case, when s(¢) is periodic with period 8 and a finite number
of observations is made at times ¢, t1+0, - - -, fi-+(n—1)0 and if furthermore
is long compared with the correlation time of the noise (i.e., x(i1+79), j=1, 2,

-, n—1, are independent), the problem can be solved by the use of the
Neyman-Pearson theory. A detailed account can be found in [1]. More recently
various authors [2] considered the sequential approach to the problem. In its
general form the problem clearly belongs to decision theory and it may be
hoped that here the theories of the late A. Wald will play an important part.

2. Spectra and correlation. The relation between the power spectrum
A(w) and the correlation function p(z),

(2.1) p(t) = f wA (w) cos wi dw,

is a standard tool in the theory of noise. It is often desirable to consider proc-
esses for which

(2.2) p(f) =0 [¢] > 4.

The relations (2.1) and (2.2) combined with the fact that 4 (w) =0 induce strong
restrictions on p(f). One can show, for instance, [3] that if # is an integer

(3)

the constant being the best possible.

T

(2.3) w1

< cos 0(0),

3. Integral equations. In the theory of radio receivers with square-law de-
tectors one is led to the problem of finding the distribution function of an ex-
pression

3.1) fwK('r){xz(t —7) + 32t — T)}dt,

where x(f) and y(f) are independent, stationary Gaussian processes with the
same correlation function p(%).
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The characteristic function of the distribution function of (3.1) is given by
(see [4])
D-(i%),

where D()) is the Fredholm determinant of the integral equation
(3.2) M Tols = D@00 = 905).
0

Integral equations of the form (3.1) appear in other branches of pure and ap-
plied mathematics and it is at least amusing to contemplate solving them by
building a corresponding receiver and determining the distribution function ex-
perimentally.

4. Zeros of random functions. This is an extremely interesting and difficult
problem where much further work needs to be done. If x(¢) is a stationary
Gaussian process with power spectrum A4 (w), the average number of zeros per
unit time is given by Rice’s formula [5]:

© 1/2
f w?A (w)dew .

=
f _“A (w)dw

The fact that by counting zeros one can obtain information about the spectrum
is in itself of great practical interest. It has been, for instance, applied to
turbulence by H. W. Liepmann and his group at the California Institute of
Technology. A more detailed study of the distribution of zeros of random func-
tions for even the simplest processes encounters great analytical difficulties. A
closely related problem is the following:

Let

(4.1)

(4.2) @) = i ax, cos 2w(\it + or)

and assume that the frequencies \; are rationally independent. Let N(T, a) be
the number of roots of

f@) =a

in 0=:=T.
It can then be demonstrated [6] that

N(T, i o
(4.3) lim }'_’ ( a) =a f_wf cos a¢ { 11 7o(awn) — :k[;IIJo(ak\/«‘E2 + Mn”)} dtdn.

k=1
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This is the counterpart of (4.1) and can be interpreted by saying that the aver-
age distance between consecutive a-values of f(¢) is given by the inverse of the
expression on the righthand side of (4.3). If one asks for the average of the
square of the distance between consecutive e-values one runs into difficulties
which, at least at present, appear insurmountable. This is already true for the
simplest case

f(®) = ay cos Mt + a5 cos Ngt

(except for special values of a;, a; and @). An interesting application of (4.3) to
the theory of unimolecular reaction rates was made recently by N. B. Slater
[7]. In conclusion let me mention another related problem, this time with no
practical implications.

Consider a polynomial of degree »

(4.4 i Xtk

k=0

whose coefficients are independent, normally distributed, random variables each
having mean 0 and variance 1. It is then easy to show [8] that the average num-
ber of real roots of (4.3) is asymptotically

(4.5) —2— log n.
™

Moreover, a tedious but rather elementary calculation shows that the standard
deviation about the mean is of lower order and consequently it is very rarely
that a random algebraic equation of high degree will have a number of real roots
which is significantly different from (4.5).

These conclusions remain valid for a much wider class of independent ran-
dom variables [9] but proofs become enormously more tedious. For the simplest
case

Prob. {Xk = 1} = Prob. {X,c = — 1} =1

the proof that (4.5) is still asymptotically the average number of real roots is
lacking!

The present exposition was naturally permeated with probabilistic consider-
ations. But perhaps it is not too idle and inappropriate to contemplate here the
possibility of a statistical approach to various questions in pure mathematics.
As an example let me consider the following question: how good is the classical
Descartes’ rule of signs? _

As applied to an individual algebraic equation the question is largely mean-
ingless. Interpreted statistically it can be properly formulated and answered.
The average number of changes of sign in (4.4) is /2 (this is to be compared
with 71 log # which is the average number of positive real roots of (4.4)).
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However, one can do better. If one considers the polynomial

()(F )

the number of real roots is the same as for (4.4); the average number of changes
of sign can now be shown to be of the order C +/n. This is about the best one can
do, and yet C+/7 is still so far from the correct order 7—!log # that we must con-
clude that Descartes’ rule of sign is extremely unlikely to give a good estimate
for equations of high degree.
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