
Large-scale two-hybrid screens have

generated a wealth of information

describing potential protein–protein

interactions. When compiled with data

from systematic localizations of proteins,

mutant screens and other functional tests,

a network of interactions among proteins

and between proteins and other

components of eukaryotic cells can be

deduced. These networks can be viewed

as maps of the cell, depicting potential

signaling pathways and interactive

complexes. Most importantly, they

provide potential clues to the function of

previously uncharacterized proteins.

Focusing on recent experiments, we

explore these protein-interaction studies

and the maps derived from such efforts.

The recent completion of many genome-
sequencing projects has prompted a shift
in the focus of large-scale biological
science from DNA (genomics) to RNA
(transcriptional profiling) and proteins
(proteomics)1,2. While sequence data
provide a necessary framework of
knowledge, they are in most cases
insufficient for understanding the
biological function of particular proteins
or understanding the interplay of these
proteins with other molecules in a cell.
A complete understanding of protein
functionality will require information on
many levels: knowledge of
transcriptional, translational and
posttranslational regulation, binding
constants, structures, protein
interactions and cellular networking.
However, answering basic questions,
such as what partners does each 
protein have, should provide a framework
onto which more complex regulatory
information can be built. In this review,
we discuss the efforts of several groups in
the large-scale identification and display
of protein interactions. The culminations
of some of these studies are protein-
interaction maps that represent a
population of interacting proteins
displayed as networks or circuits. Such
networks show not only the potential
binding partners of a specific protein but
also the complexities of these interactions
on a global level.

Protein-interaction maps

One of the primary methodologies that
allowed for the large-scale analysis of
protein interactions was the
development of the yeast two-hybrid
system3. Through this method, proteins
could be assayed for interaction simply
by measurement of the growth of yeast
colonies on a plate. The first large-scale
two-hybrid data were generated for the
T7 bacteriophage4, whereas other

analyses have focused on selected
proteins from Caenorhabditis elegans5

and Saccharomyces cerevisiae6–8.
Recently, a two-hybrid protein-
interaction analysis was undertaken of
the entire S. cerevisiae proteome9. The
results from this project were combined
with other S. cerevisiae interaction data
annotated in the Yeast Proteome Database
(YPD; http://www.proteome.com) and
the MIPS database (Munich Information
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Fig. 1. Yeast protein interaction network of ~1200 interacting proteins based on published interactions (modified
from Ref. 10). Inset shows close-up of region highlighted in box. Highlighted in red are cell structure proteins (a
single functional class). Proteins in this category can be observed to cluster primarily in one region. Although
interacting proteins are not depicted in a way that is consistent with their known cellular location (i.e. those
proteins known to be present in the nucleus in the center of the interaction map and those present in plasma
membranes in the periphery), signal-transduction pathways (or at least protein contact paths) can be inferred from
this diagram. Also highlighted (in blue) are proteins involved in galactose regulation. These proteins are put in a
functional context in Fig. 4. To experience the full detail of this figure, readers are advised to view the online
version (http://journals.bmn.com).



Center for Protein Sequences;
http://www.mips.biochem.mpg.de) to
generate a global yeast protein-
interaction map10. Several public
databases also contain protein-
interaction maps, including Myriad
Corporation’s Pronet® database
(http://www.myriad-pronet.com), which
is generated solely from previously
reported interactions of human proteins,
and Curagen Corporation’s PathCalling®

database (http://portal.curagen.com).
Protein interactions have additionally
been deduced by purely computational
methods11.

Protein network organization

The graphical representations of
protein-interaction maps provide a
rough outline of the complexity of
protein associations. Schwikowski
et al.10 compiled a list of about 2700
published protein interactions from the
S. cerevisiae literature and found that
1548 yeast proteins could be depicted in
a single large network (Fig. 1). When
proteins of specific functional categories
are highlighted in this network, as
shown in Fig. 1 for cell structure proteins

(in red), proteins of like function tend to
cluster together. By classifying proteins
into these types of functional categories,
Schwikowski et al. also generated a
functional linkage map from this data10

(Fig. 2). Proteins in certain functional
classes, such as cell-cycle regulation,
transcription and chromatin regulation,
have interactions with proteins of many
other classes, consistent with their
central roles in the cell. Other processes
such as membrane fusion are more
isolated, with proteins interacting
mainly within this group or with a
related group, vesicular transport.

The functional classification of
proteins also allowed Schwikowski et al.
to evaluate the plausibility of the
network10. They found that 72% of all
interactions between experimentally
characterized proteins in this network
are between two partners of the same
functional class. When the interactions
are randomized among the same set of
proteins, only 12% of all interactions
belong to the same class10. It is harder to
evaluate the plausibility of interactions
among proteins of different functional
classes. These might be false-positive

interactions, but they also might be
crosstalk interactions or interactions in
related pathways. Even if an interaction
appears implausible, they might be
related pathways in which a link has not
been uncovered. Two examples of
seemingly implausible interactions
between different functional categories
are those between membrane-associated
proteins and transcription factors as in
β-catenin and TCF/LEF112 or the Notch
receptor and Su(H)13.

Regulatory networks similar to that
shown in Fig. 2 for yeast proteins can also
be drawn for vertebrates. Figure 3 shows
an interaction map of human proteins
generated by the Myriad Pronet®

database (www.myriad-pronet.com)
based on the signaling pathway of the
tumor-suppressor BRCA1. The original
map was greatly simplified by removing
all single interactors (proteins that
interact with only one other protein) and
single diverging branches (pathways that
branch off and eventually dead-end),
leaving a set of ‘core proteins’ that
contain interaction pathways that
connect to each other. In simplifying this
map, we obtain a picture of the cell not
unlike that shown with yeast. The core
interactors fall into the same three
central functional categories displayed in
Fig. 2 – 21 out of 24 core proteins are
involved in growth control, chromosome
structure/chromatin remodeling or
transcription. It is interesting, but
perhaps not surprising, that the majority
of these core proteins are associated with
disease, given their central roles in
growth control and gene regulation.
Disease proteins are typically the most
studied and thus have the most complete
sets of interaction data. When examining
maps generated from interactions
reported in the literature, this bias must
obviously be considered. As the number
of large-scale interaction studies
increases, it will be interesting to see how
maps generated from less biased data
sets differ from the literature-based
maps. It is likely that the most studied
proteins have the most, or the most
central, interactions because these are
typically the proteins involved in crucial
functions in the cell. This concept is
supported by data from large-scale yeast
two-hybrid screens, where known
proteins tend to have twice as many
interactions as uncharacterized ones
(P. Uetz et al. unpublished).
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Fig. 2. Functional group interaction map based on Fig. 1 (modified from Ref. 10). Shown are interactions between
functional groups of yeast proteins. Each line indicates that there are 15 or more interactions between proteins of the
connected groups. Connections with fewer than 15 interactions are not shown because one or a few interactions
occur between almost all groups and often tend to be spurious – that is, based on false positives in two-hybrid
screens or other assays. Note that only proteins with known function are included and that about one-third of all
yeast proteins belong to several classes.



From protein interactions to functional

assignments

While protein-interaction studies are
useful for describing protein networks,
the main goal of most interaction studies
today is to learn about individual
proteins: their potential partners,
functions and interactive complexes.
By identifying known partners of an
unknown protein, a putative functional
category for the unknown protein can
often be assigned. High-throughput
screens can have an advantage in this
sense over individual studies both in the
number of novel proteins that can be
assigned potential functions and in the
accuracy of the assignments. If protein X
(uncharacterized) is found to interact
with protein Y and protein Z, and both
Y and Z are components of the RNA-
processing machinery, then it is quite
likely that protein X is also involved in
RNA processing, perhaps as part of a
complex with Y and Z. Based on their
protein-interaction map of yeast,
Schwikowski et al. compiled a list of
about 370 proteins of unknown function
that interact with at least one protein of
known function10. They found that about

10% of these 370 had at least two protein
partners of the same function. Such
uncharacterized proteins are likely to
have a role similar or related to that of
their known interactors. Although
identifying just one or two interactors for
an uncharacterized protein might be
insufficient to predict its function
reliably, it does suggest an activity that
can be tested experimentally. However,
it is important to keep in mind the false-
positive and false-negative interactions
in these studies, one of the main
limitations of comprehensive protein-
interaction mapping14,15.

Two-hybrid screens and their role in

protein-interaction studies

Owing to the limited number and variety
of large-scale systematic studies, there is
at the present time no good estimate of
how many protein interactions there are
in a cell. Ideally, an accurate estimate of
the total number of protein interactions
would be based on experimentally
determined interactions between
proteins that are known to be present at
the same time and in the same general
location (i.e. nucleus or cytoplasm). Most

of the data so far generated from large
protein-interaction studies have come
from two-hybrid screening, a technique
known to generate false positives and
requiring experimental confirmation of
any potential hit14,15. Additionally, two-
hybrid screening might miss interactors
because of requirements for the potential
interacting protein to be stably
expressed as a fusion protein in the
nucleus or owing to requirements for
posttranslational modifications. Until
the accuracy of these studies has been
evaluated on a larger scale, these issues
must be considered in any prediction of
the number of protein interactions.

How many protein interactions are there

in a cell?

With the above caveats in mind, we
analyzed one of the larger reported
protein interaction studies9 to make a
crude estimate of the number of protein
interactions in a cell. In the two-hybrid
screens carried out by Uetz et al. 9,
reproducible positives were found for
approximately half of the proteins
screened against the entire set of yeast
ORFs, with an average of 3.2 non-
redundant interactions each. While some
of these might indeed be false positives,
approximately 70% of the known
interactors were proteins of the same
functional category (listed in Fig. 2),
suggesting that at least ~70% of the
interactions are plausible. Since half of
the screened proteins (‘baits’) were
unable to interact with the array of yeast
ORFs in these screens (‘preys’),
we estimate that potentially half of the
‘preys’ could also be unable to participate
in a two-hybrid interaction. Considering
a potential false-negative rate of 50%,
and a potential false-positive rate of
10–30%, the average number of
interactions would be around 4.5 to 5.8. A
similar two-hybrid false-negative rate of
45% was estimated by Walhout et al. in
their C. elegans studies5. An average of
~5 interactions per protein is similar to
a previous estimate of six interactions
per protein that was compiled from
two-hybrid screens reported in the
literature15. When we compared the
array two-hybrid results for eight of the
most studied proteins in the yeast
literature with published interactions,
only 10% of previously known
interactions were detected. If these
screens indeed detect only 10% of all
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Fig. 3. Simplified protein-interaction map generated using Myriad Pronet® software (www.myriad-pronet.com),
showing core proteins involved in the BRCA1 signaling network. This map was generated by removing all single-
interacting proteins as well as any single pathways that branch off from the core. Highlighted in pink are proteins
involved in transcription, in green are proteins involved in growth control, and in blue, chromatin/chromosome
structure proteins. Some proteins, such as Ku70, have multiple functions. In general, no more than seven interactions
are required to link any one core protein with another, while the degrees of separation between proteins outside of
the core are much greater.



interactions, this would give about
16 interactions per protein. However, the
most studied proteins are also likely to
have higher than average numbers of
interactions, and 16 interactions per
protein seems unreasonably high for the
entire genome. Extrapolating to all yeast
proteins and considering a potential
false-positive rate of 50% and false-
negative rate of 10–30%, this analysis
would predict approximately 13 440 to
17 280 total interactions in yeast
[(6000 × 4.5–5.8) / 2; note that the
number is halved to rule out redundant
interactions, i.e. A–B is the same
interaction as B–A]. If we consider that
(a) potentially 1000 yeast ORFs are
questionable16 and (b) unknown ORFs
tend to have only half as many
interactions as characterized ones14 (the
majority of baits in the Uetz et al. screens
have been known proteins), the number
would be reduced by (a) 1000 × 5 / 2 = 2500
and (b) 2000 × 2.5 / 2 = 2500, we arrive 
at a figure of roughly 8000 to 12 000
protein interactions.

Beyond interaction data: regulatory

networks and cellular modeling

Although comprehensive protein
interaction maps of cells will eventually
be generated, the intricate behavior of a
cell is much more complex than can be
displayed by a two-dimensional map
such as that shown in Fig. 1.
Transcriptional and translational
regulation, posttranslational
modifications, and spatial and temporal
expression patterns must all be
considered in cellular modeling
scenarios. While current databases are
sufficient for an investigator studying a
particular protein or small network, they
are not as useful in integrating complex
information about cellular regulation,
pathways, networks and cellular roles,
and they lack coordination and the
ability to exchange information between
multiple data sources. Large studies
that incorporate biochemical,
physiological, morphological and
temporal information will require the
development of more integrative

databases as well as novel interfaces to
display such information. Protein
linkage maps that incorporate active
linking (Myriad’s ProNet®) or color-
coding10 are a step in the direction of
attempting to find a simple way to
display a complex system to the user.
However, even these maps are unable to
provide information about the strength
or kinetics of an interaction. Current
protein interaction maps are also unable
to differentiate between individual
protein-interactions versus complexes.
More complicated methods, such as
described in Pirson et al.17 or Kohn
et al.18, will be required to document
regulatory pathways in greater detail,
but they might eventually need to be
automated to allow dynamic
visualization and integration of
biological information.

A study by Ideker et al.19 provides an
example of the type of integrative study
that will likely be more common in the
post-genomic world. The authors used
DNA microarrays, mass spectrometry
and protein-interaction studies to analyze
the galactose metabolism pathway in
yeast (represented in Fig. 4). By studying
RNA expression profiles in deletion
mutants of yeast GAL genes involved in
galactose metabolism, the authors
identified genes that are transcriptionally
affected by certain Gal proteins, revealing
both known and unknown regulatory
connections. They additionally used mass
spectrometry to measure the levels of
several hundred proteins, showing that,
for many genes, there is a correlation
between RNA and protein levels, but that
for others there is surprisingly little
correspondence. They integrated both
previously published protein–protein
interactions and metabolic pathways
with these data to generated an
integrated picture of this pathway.

Looking to the future

It is clear from the studies thus far that
the complexity that emerges from 
large-scale protein interaction maps is
daunting. We require new tools for
visualizing complex information, better
databases for exchanging this
information, and new approaches to
integrative science. The experience
gained from studies of smaller genomes,
such as that of S. cerevisiae (see also
Box 1), will provide a basis for future
exploration of higher eukaryotes.
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Fig. 4. Five proteins of the galactose pathway (represented in blue in Fig. 1) are diagrammed here in a
functional context. The pathway shows the import of galactose through its eventual conversion to glucose-1-
phosphate, proteins involved in regulating this process, and transcriptional regulation of proteins at the gene
level. The individual Gal proteins interact with other proteins, as implicated in the protein-linkage maps, but
also nucleic acids (pink), metabolites (green) and ions. Shown are a transporter (Gal2), metabolic enzymes
(Gal1, Gal7, Gal10, Gal5), transcription factors (Gal4, Gal11) and regulatory proteins (Gal3, Gal80). In addition,
hundreds of other proteins are required for processes such as transcription, RNA processing, RNA transport,
translation and degradation.



Acknowledgements

We thank Benno Schwikowski for generously
providing the map in Fig. 1. We also thank
Stanley Fields and the reviewers for useful
comments on the manuscript.

References

1 Eisenberg, D. et al. (2000) Protein function in the
post-genomic era. Nature 405, 823–826

2 Pandey, A. and Mann, M. (2000) Proteomics to
study genes and genomes. Nature 405, 837–846

3 Fields, S. and Song, O. (1989) A novel genetic
system to detect protein–protein interactions.
Nature 340, 245–246

4 Bartel, P. et al. (1996) A protein linkage map of
Escherichia coli bacteriophage T7. Nat. Genet. 12,
72–77

5 Walhout, A. et al. (2000) Protein interaction
mapping in C. elegans using proteins involved in
vulval development. Science 287, 116–122

6 Flores, A. et al. (1999) A protein–protein
interaction map of yeast RNA polymerase III.
Proc. Natl. Acad. Sci. U. S. A. 96, 7815–7820

7 Ito, T. et al. (2000) Toward a protein interaction
map of the budding yeast: a comprehensive
system to examine two-hybrid interactions in all
possible combinations between the yeast proteins.
Proc. Natl. Acad. Sci. U. S. A. 97, 1143–1147

8 Fromont-Racine, M. et al. (2000) Genome-wide protein
interaction screens reveal functional networks
involving Sm-like proteins. Yeast17, 95–110

9 Uetz, P. et al. (2000) A comprehensive analysis of
protein–protein interactions in Saccharomyces
cerevisiae. Nature 403, 623–627

10 Schwikowski, B.et al. (2000) A network of interacting
proteins in yeast.Nat. Biotechnol. 18, 1257–1261

11 Marcotte, E. et al. (1999) Detecting protein
function and protein–protein interactions from
genome sequences. Science 285, 751–753

12 Barker, N. et al. (2000) The yin–yang of TCF/beta-
catenin signaling. Adv. Cancer Res. 77, 1–24

13 Artavinis-Tsakonas, S. et al. (1999) Notch
signaling: cell fate control and signal integration
in development. Science 284, 770–776

14 Uetz, P. and Hughes, R. (2000) Systematic and
large-scale two-hybrid screens. Curr. Opin.
Microbiol. 3, 303–308

15 Walhout, A. et al. (2000) Yeast two-hybrid
systems and protein interaction mapping 
projects for yeast and worm. Yeast 17, 88–94

16 Kowalczuk, M. et al. (1999) Total number of
coding open reading frames in the yeast genome.
Yeast 15, 1031–1034

17 Pirson, I. et al. (2000) The visual display of
regulatory information and networks. Trends 
Cell Biol. 10, 404–408

18 Kohn, K.W. (1999) Molecular interaction map of
the mammalian cell cycle control and DNA repair
system. Mol. Biol. Cell 10, 2703–2734

19 Ideker, T. et al. Systematic perturbation and
global analysis of galactose utilization in yeast.
Science (in press)

Chandra L. Tucker*
Peter Uetz
Depts of Genetics and Medicine, 
University of Washington Box 357360,
Seattle, WA 98195, USA.
*e-mails: ctucker@u.washington.edu
uetz@u.washington.edu

Joseph F. Gera
Depts of Genetics and Medicine and 
Howard Hughes Medical Institute, 
University of Washington Box 357360,
Seattle, WA 98195, USA.
e-mail: gera@u.washington.edu

TRENDS in Cell Biology Vol.11 No.3  March 2001

http://tcb.trends.com

106 Research Update

A guide to the new sections of Trends in Cell Biology

Research Update

features succinct mini-reviews that offer expert and balanced interpretation of important recent advances. Updates on
new techniques and news from conferences are also provided in this section. 

News & Comment

contains the Journal Club – short commentaries highlighting the most important recent papers in cell biology written by a
diverse panel of active scientists – and also In Brief news, offering a glimpse of interesting developments in policy,
funding, legal and ethical issues and the like, of relevance for cell biologists. Letters about articles in the journal or any
issue of general interest to cell biologists are welcomed for publication in this section.

Opinion

provides a forum for personal viewpoints on research topics, including discussion of controversial or developing themes,
and models or hypotheses. Articles for Trends in Cell Biology are generally commissioned, but suggestions for Opinion
articles in particular are encouraged (a short synopsis with key references should be sent).

Review

articles form the core of the journal, providing authoritative, timely and objective coverage of important developments in
cell-biological research. A peer-review process is an important part of the evolution of these articles. (Research News and
Opinion articles are also peer-reviewed.)

Forum

contains lighter reading such as book and software reviews, and Pioneer, Career Perspective and Profile articles. 

Rain et al. recently screened 261
proteins of the human gastric
pathogen Helicobacter pylori by
using the two-hybrid system and
found more than 1200 interactionsa.
The interactions reported involve
~740 out of 1590 open reading 
frames – that is, 46% of the whole
genome. Only about 2% of these
interactions have been found 
among homologous proteins in
Escherichia coli, showing how little
we know even about the ‘best-
studied’ organisms. Although they 
do not show a graphic interaction
map, the authors provide software on
their website (www.hybrigenics.com)
to visualize subsets of interactions
(free for academic users after
registration). This technology is
applicable to higher eukaryotes for
which highly complex random-
primed cDNA libraries can be
screened for interacting domains.
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Box 1. Note added in proof:
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