
Introduction to Unix

20 Introduction to Shell Scripting

20.1 Lecture

1. Shell scripts are small programs. They let you automate multi-step processes, and give you the
capability to use decision-making logic and repetitive loops.

2. Most UNIX scripts are written in some variant of the Bourne shell. Older scripts may use
(the ‘classic’ Bourne shell). We use here.

3. Consider this sample script (at ⇠ ; remember the example?)⌥ ⌅
1 #! /bin/bash
2 #
3 # Sample shell script for Introduction to UNIX class.
4 # Jason R. Banfelder.
5 # Displays basic system information and UNIX students ' disk usage.
6 #
7 # Show basic system information
8 echo �hostname �: �w | head -n 1�
9 echo �who | cut -d" " -f1 | sort | uniq | \

10 egrep "^unixst" | wc -l� students are logged in.
11 #
12 # Generate a disk usage report.
13 echo "-----------------"
14 echo "Disk Usage Report"
15 echo "-----------------"
16 cd /ru -auth/local/home
17 # Loop over each student 's home directory ...
18 for STUDENT_ID in unixst*
19 do
20 # ...and show how much disk space is used , in bytes
21 du -shLb --exclude '.local ' --exclude='.ssh ' --exclude='.ansible ' /ru -

auth/local/home/$STUDENT_ID
22 done⌃ ⇧
(a) All scripts should begin with a ‘shebang’ () to give the name of the shell.
(b) Comments begin with a hash.
(c) You can use all of the UNIX commands you know in your scripts.
(d) Variables are useful tools within shell scripts. Variables are names that have a value that can

vary (hence ‘variable’). Variables can be environment variables, or local variables. Some of the
more common environmental variables are: $HOME, $PATH, $USER, $SHELL. Local variables are
variables that are created by the user, usually only lasting within a particular session, or within
a shell script, e.g., the BLASTDB variable that we saw previously. The value of a variable can
change during the course of the execution of a shell script. Use a $ before variable names to use
the value of that variable.
i.
ii. $

(e) To capture the result of a command, enclose the command within backticks (upper-left of your
keyboard), or by $ command . This can then be assigned to a variable.
i. ^

ii. $ ^

iii. $
iv. $ ^

(f) Note the loop construction. The construct allows a block of commands to be executed
several times, assigning a di↵erent value to a loop variable in each iteration. Here we are using

© Copyright 2004-2023 J. Banfelder, L. Skrabanek, Weill Cornell Medicine page 27

Introduction to Unix

shell globbing to generate the list of things to loop over. This will iterate over all the directories
which begin with unixst. The for construct is defined by the keywords [followed by the
loop variable and the values it will take], [defines the start of the loop], and [defines
the end of the loop].

4. Scripts have to be executed, so you need to the script file. Use to see the file permissions.

20.2 Exercise

1. Write a script to print out the quotations from each directory.
(a) Did you write the script from scratch, or copy and modify the example above?

2. Create a subdirectory called in your home directory, if you don’t already have one. Move your
script there.

3. Permanently add your directory to your .
(a) It is a UNIX tradition to put your useful scripts and programs into a directory named .

4. Save your script’s output to a file, and e-mail the file to yourself.
(a)
(b) We hope you enjoy this list of quotations as a souvenir of this class.

© Copyright 2004-2023 J. Banfelder, L. Skrabanek, Weill Cornell Medicine page 28

Introduction to Unix

21 More Scripting Techniques

21.1 Lecture

1. As you write scripts, you will find you want to check for certain conditions before you do things.
For example, in the script from the previous exercise, you don’t want to print out the contents of a
file unless you have permission to read it. Checking this will prevent warning messages from being
generated by your scripts.
(a) The following script fragment checks the readability of a file. Note that this is a script fragment,

not a complete script. It won’t work by itself (why not?), but you should be able to incorporate
the idea into your own scripts.⌥ ⌅
1 if [-r $STUDENT_ID/quotation]; then
2 echo
3 cat $STUDENT_ID/quotation
4 fi⌃ ⇧

(b) Note the use of the construct. The construct is defined by the keywords if [followed
by the expression to be evaluated], then [defines the start of the block that should be processed
if the expression is TRUE], and fi [defines the end of the block]. There are also the optional
keywords elif [additional expressions to evaluate, if the first one is FALSE], and else [default
set of commands to be processed if none of the expressions evalute to TRUE].
i. In particular, note that you must have spaces next to the brackets in the test expression.

(c) Note how the command is combined on the same line as the statement by using the
operator.

(d) You can learn about many other testing options (like) by reading command man page.
2. The command is useful for reading input (either from a file or from an interactive user at the

terminal) and assigning that input to a variable.⌥ ⌅
1 #! /bin/bash
2 #
3 # A simple start at psychiatry.
4 # (author to remain nameless)
5 echo "Hello there."
6 echo "What is your name?"
7 read PATIENT_NAME
8 echo "Please have a seat , ${PATIENT_NAME }."
9 echo "What is troubling you?"

10 read PATIENT_PROBLEM
11 echo -n "Hmmmmmm '"
12 echo -n $PATIENT_PROBLEM
13 echo "' That is interesting ... Tell me more ..."⌃ ⇧
(a) Note how the variable name is in braces. Use braces when the end of the variable name may be

ambiguous.
3. The command can also be used in a loop to read one line at a time from a file.⌥ ⌅

1 while read line; do
2 echo $line
3 <your script code here >
4 done < input.txt⌃ ⇧
(a) You can also use tests as the condition for the loop to continue or terminate in

commands.
(b) Also see the command for a similar loop construct.

© Copyright 2004-2023 J. Banfelder, L. Skrabanek, Weill Cornell Medicine page 29

Introduction to Unix

4. You can also use arguments from the command line as variables.⌥ ⌅
1 while read line; do
2 echo $line
3 <more script code here >
4 done < $1⌃ ⇧
(a) $ is the first argument after the command, $ is the second, etc.

21.2 Exercise

1. Modify your quotation printing script to test the readability of files before trying to print them.

© Copyright 2004-2023 J. Banfelder, L. Skrabanek, Weill Cornell Medicine page 30

Introduction to Unix

22 Scripting Expressions

22.1 Lecture

1. You can do basic integer arithmetic in your scripts.
(a) $ $ $ $ $ $ will add the first five numerical arguments to the

script you are running, and assign them to the variable named total.
(b) Try typing $ at the command line.
(c) What happens if one of the arguments is not a number?
(d) You can use parentheses in the usual manner for grouping within math expressions.

i. $ $ $

22.2 Exercise

1. Count the number of reads in the demo.fastq file in the instructor’s nextgen directory. A fastq file
has 4 lines per read.

2. When we learned about , we saw that we had to know how many sequences were in a .fasta

file to properly construct the command.
(a) Write a script to do this work for you.⌥ ⌅

1 #! /bin/bash
2 #
3 # Intelligently split a fasta file containing
4 # multiple sequences into multiple files each
5 # containing one sequence.
6 #
7 seqcount=�egrep -c '^>' $1 �
8 echo "$seqcount sequences found."
9 if [$seqcount -le 1]; then

10 echo "No split needed."
11 exit
12 elif [$seqcount -eq 2]; then
13 csplit -skf seq $1 '%^>%' '/^>/'
14 else
15 repcount=$(($seqcount - 2))
16 csplit -skf seq $1 '%^>%' '/^>/' \{${repcount }\}
17 fi⌃ ⇧

(b) Use this script to split up the seqs.fasta file from the instructor’s sequences directory.
i.

(c) Expand this script to rename each of the resultant files to reflect the sequence’s GenBank ID.
>gi|37811772 |gb|AAQ93082.1| taste receptor T2R5 [Mus musculus]

This is shown underlined and in italics in the example above.
i. How would you handle fasta headers without a GenBank ID?

(d) Expand your script to sort the sequence files into two directories, one for nucleotide sequences
(which contain primarily A, T, C, G), and one for amino acid sequences.
i. How would you handle situations where the directories do/don’t already exist?
ii. How would you handle situations where the directory name already exists as a file?
iii. When does all this checking end???

© Copyright 2004-2023 J. Banfelder, L. Skrabanek, Weill Cornell Medicine page 31

Introduction to Unix

3. What does this script do? (hint:)⌥ ⌅
1 #! /bin/bash
2 gcounter =0
3 ccounter =0
4 tcounter =0
5 acounter =0
6 ocounter =0
7 while read line ; do
8 isFirstLine=�echo "$line" | egrep -c '^>'�
9 if [$isFirstLine -ne 1]; then

10 lineLength=�echo "$line" | wc -c�
11 until [$lineLength -eq 1]; do
12 base=�expr substr "$line" 1 1�
13 case $base in
14 "a"|"A")
15 acounter=�expr $acounter + 1�
16 ;;
17 "c"|"C")
18 ccounter=�expr $ccounter + 1�
19 ;;
20 "g"|"G")
21 gcounter=�expr $gcounter + 1�
22 ;;
23 "t"|"T")
24 tcounter=�expr $tcounter + 1�
25 ;;
26 *)
27 ocounter=�expr $ocounter + 1�
28 ;;
29 esac
30 line=�echo "$line" | sed 's/^.//'�
31 lineLength=�echo "$line" | wc -c �
32 done
33 fi
34 done < $1
35 echo $gcounter $ccounter $tcounter $acounter $ocounter⌃ ⇧

4. Write a script to report the fraction of GC content in a given sequence.
(a) How can you use the output of the above script to help you in this?

© Copyright 2004-2023 J. Banfelder, L. Skrabanek, Weill Cornell Medicine page 32

	Introduction (logging in, passwords)
	Lecture
	Exercise

	Looking at Files (ls, cat, more, head, tail)
	Lecture
	Exercise

	Directories (pwd, cd, relative and absolute pathnames)
	Lecture + Exercise

	Manipulating Files and Directories (cp, mkdir, mv)
	Lecture
	Exercise

	Introduction to Editing File Content - Part I (vi)
	Lecture
	Exercise

	Introduction to Editing File Content - Part II (vi)
	Lecture
	Exercise

	Deleting Files and Permissions (rm, rmdir, chmod)
	Lecture

	Some Cool Stuff
	Lecture

	Introduction to Pattern Matching (egrep)
	Lecture
	Exercise

	Redirection and Advanced Pattern Matching (egrep)
	Lecture

	Exercise
	Miscellaneous (date, cal, w, top)
	Lecture
	Exercise

	Surfing Efficiently in vi
	Lecture
	Exercise

	Please, No, Not More vi
	Lecture
	Exercise

	Non-interactive Editing (sed)
	Lecture

	Running Programs (environment variables, alias, which, background jobs)
	Lecture
	Exercise

	Manipulating Data (cut, csplit, sort, uniq, wget)
	Lecture
	Exercise

	Compressing and Archiving Files (tar, gzip, gunzip)
	Lecture
	Exercise

	Installing Open Source Software Under Linux: samtools
	Lecture
	Exercise

	Introduction to Shell Scripting
	Lecture
	Exercise

	More Scripting Techniques
	Lecture
	Exercise

	Scripting Expressions
	Lecture
	Exercise

