Bioinformatics
History and Introduction

Luce Skrabanek
31 January 2012
http://chagall.med.cornell.edu/BioinfoCourse/
What is bioinformatics?

- The application of statistics and computer science to the field of molecular biology
- Uses computers to store, manage, manipulate, analyze biological data
- Applications:
 - Unravel biological meaning and develop biological and evolutionary insights
 - Drug discovery and development; personalized medicine
Required skills

• Biology
• Computer science
• Mathematics/Statistics
• Information technology

• All needed to some degree but some needed more for some applications than others
• Often, not all required skills are present in one person. Need teams with programmer, biologist, IT person, statistician, even graphic designer
Applications of bioinformatics

• Most basic: use web-based tools
 – Primarily need biology
• Use Unix-based tools
 – Above, plus need ability to use Unix, write wrappers in Perl/Python, write shell scripts
• Use Unix tools for high-throughput data
 – Above, plus an understanding of data storage and scalability
• Algorithm development
 – Computer-science focus, will usually partner with a biologist
• Making data/methods public
 – Creating databases/web pages (IT)
Interplay of disciplines

- Advances in **experimental biology** give us new and different types of data to analyze, which may require completely new ways of dealing with that data (e.g., data from high-throughput experiments)
- Advances in **biological understanding** allow computational predictive models to incorporate more information and become more complex
- Advances in **computer technology** allow us to deal with greater amounts of data in reasonable time frames
Sources of data

http://www.oxfordjournals.org/nar/database/c/

2012 NAR Database Summary Paper Category List

Nucleotide Sequence Databases
RNA sequence databases
Protein sequence databases
Structure Databases
Genomics Databases (non-vertebrate)
Metabolic and Signaling Pathways
Human and other Vertebrate Genomes
Human Genes and Diseases
Microarray Data and other Gene Expression Databases
Proteomics Resources
Other Molecular Biology Databases
Organelle databases
Plant databases
Immunological databases
Cell biology
Some important databases

• Archives of data stored in a uniform, consistent, efficient, searchable way (database and query tools)
• Primary databases vs. secondary databases
 – Sequence and annotation vs. results of analyses

• PubMed
• GenBank/EBI/DDBJ vs. RefSeq
• Sequence Reads Archive
• UniProtKB
• PDB
• HPRD
Caution!

• **Errors in the databases**
 - wrong positions of genes
 - exon-intron boundary errors
 - contaminating sequences
 - sequence discrepancies/variations
 - frameshift errors
 - annotation errors
 - spelling mistakes
 - incorrectly joined contigs
Mouse BLAT Results

BLAT Search Results

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>QUERY</th>
<th>SCORE</th>
<th>START</th>
<th>END</th>
<th>QSIZE</th>
<th>IDENTITY</th>
<th>CHRO</th>
<th>STRAND</th>
<th>START</th>
<th>END</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>browser details</td>
<td>NM_009375.1</td>
<td>4659</td>
<td>1</td>
<td>4696</td>
<td>8301</td>
<td>99.9%</td>
<td>15</td>
<td>-</td>
<td>68019482</td>
<td>68056718</td>
<td>37237</td>
</tr>
<tr>
<td>browser details</td>
<td>NM_009375.1</td>
<td>2583</td>
<td>5668</td>
<td>8301</td>
<td>8301</td>
<td>99.5%</td>
<td>15</td>
<td>+</td>
<td>68256929</td>
<td>68370132</td>
<td>113204</td>
</tr>
<tr>
<td>browser details</td>
<td>NM_009375.1</td>
<td>700</td>
<td>4697</td>
<td>5400</td>
<td>8301</td>
<td>100.0%</td>
<td>15_random</td>
<td>-</td>
<td>18845817</td>
<td>18860431</td>
<td>14615</td>
</tr>
</tbody>
</table>

- **Chr 15**
- **Chr 15_random**
My protein doesn’t begin with an M?

• Nuclear-encoded proteins always begin with a methionine

• Some entries in protein databases don’t!
 – Some part of the 5’ UTR was misinterpreted as coding sequence
 – mRNA was not fully sequenced at the 5’ end
 • In both cases, can use comparative alignment information, either from closely related paralogs or other ESTs/mRNA sequences to try to identify the correct gene structure
 – Gene structure incorrectly predicted

31 January 2012 Luce Skrabanek
Consequences of errors in trusted data sources

• Automated annotators (e.g., function, genome) rely on curated information sources to make predictions

• False research directions, false conclusions
 – Sekyere 2003 – non-existent human melanotransferrin gene; Willersley 2002 – contaminant misidentified as lateral transfer from prokaryotes into humans
 – deCODE overestimated genetic diversity in Icelanders because of errors in mtDNA sequencing studies

• Impediment to improving current prediction models
 – Harder to improve if we don’t know where the errors in current knowledge lie
Some sample error rates

- GenBank: 0.37 to 10 sequence errors per 1000 bases

- UniProtKB annotations: 33-43%
 - Artamonova et al, Bioinformatics 2005

- GO database (standard database used for automated functional annotation prediction): 28-30%
 - Jones et al, BMC Bioinfo 2007
Introduction of errors

• Entry errors in primary databases
 – Direct deposit into database by experimentalist
 – Incorrect transfer (from literature, other databases) by curators

• Analysis errors in secondary databases
 – Incorrectly derived data

• Inherited errors in secondary databases
 – Sequence similarity based annotation strategies may introduce new annotation errors, by incorrectly identifying similar sequences
Propagation of errors

• The quality of existing sequence annotations impacts on the quality of future sequence annotations through the commonly used practice of basing sequence annotations on sequence similarity.

• Corrections to such errors rarely occur, and when they do, the correction usually does not get propagated.
 – Some exceptions: UniProtKB, a curated database, does get regularly updated and corrected

MORAL: as a submitter, quality check when entering data; as a user, keep possibility of errors in mind
Where do we go from here?

- Huge amounts of ‘parts’ data
 - Sequence (both nucleotide and protein)
 - Structure
 - Function
 - Biochemical information
 - Protein-protein interactions, complexes
 - Protein-DNA complexes
 - Kinetics of reactions

→ Integrated together into “Systems Biology”

- The study of the interactions between the components of a biological system
- How those interactions give rise to the function and behavior that we see
Mathematical modeling

- Biological systems can be represented by ODEs
 - compartments
 - stochastic methods for low concentration components
- Systems modeling can:
 - effectively integrate “parts” information
 - help reveal non-intuitive “emergent” properties
 - teach us how cells store information and ‘compute’
- Quantitative models of pathways and networks
 - predict cellular responses to external stimuli
 - model effects of perturbations on the system
 - predict how to ‘correct’ disease states
 - identify control points in the system
Scalability

• Huge volumes of data available to us
 – Complete genomes, NGS

• Necessary computational resources now available to deal with these amounts of data
 – 8 GB (~human genome) can be stored on an iPod
 – Tree of life can be stored in 1TB
 – Raw data from 1 NGS experiment = 1TB

• Tools and techniques have to be efficient and scalable
The scales of knowledge

• Historically, dealing with one protein at a time
• Now we are dealing with large amounts of noisy data – requires a new kind of scientist: “data scientist”
 – Translate data into predictive insights
 – Feel comfortable dealing with noisy incomplete data
 – Explore data to generate hypotheses, exploration drives direction of research
 – Can handle the challenge of dealing with petabytes of data

31 January 2012

Luce Skrabanek
Protein-protein interaction networks in the *Drosophila melanogaster* cell

Examining bioinformatics approaches to a biological problem

miRNA target prediction
miRNAs: an introduction

• Small RNA molecules, 19-24 bases in length, that are involved in regulation of numerous biological processes
 – Target mRNA for degradation
 – Repress translation

• Derived from longer primary miRNA transcripts
Introduction contd.

• First discovered in *C. elegans* in 1993
 – lin4, let7

• Subsequently found to be widespread

• About 700+ human miRNAs known
 – Many have been associated with specific diseases
 • Identification of specific miRNA species may be a possible tool for cancer diagnosis
 – TarBase – database of experimentally verified miRNA targets
adapted from Li et al, Mamm Genome 2009
Direct experimental identification of target genes

- Reporter constructs (luciferase, GTP) with the 3’ UTR of the predicted target gene: measure change in intensities after introduction of miRNA
- RT-PCR: track changes in mRNA levels after introduction of miRNA

- Does not directly identify MREs (miRNA recognition elements)
 - Site-directed mutagenesis studies
 - Restoration of complementarity by mutating miRNA sequence
Indirect experimental identification of target genes (target “enrichment”)

• For miRNAs involved in RNA degradation
 – Microarrays: differential gene expression with/without miRNA [secondary and non-specific effects]
 – RNA-Seq: next gen sequencing method of measuring differential expression [secondary and non-specific effects]
 – HITS-CLIP (high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation): can identify specific binding sites for targeted miRNAs [non-functional sites] [Chi et al. Nature 2009]

• For miRNAs involved in translation repression
Computational prediction of miRNA targets

Main types of target site duplex

Canonical

Dominant seed

Compensatory

Mazière and Enright, Drug Disc Today, 2007
Computational prediction of miRNA targets

• Problems:
 – Short length: normal (Karlin-Altschul) alignment statistics no longer hold; even over the short alignment length, can have bulges and loops
 – Not all 3’ UTRs characterized: critically important to have the whole 3’ UTR
 • 30% of human genes lack definitive 3’ UTR boundaries
 – Availability of appropriate species for conservation analysis
Computational prediction of miRNA targets

• Different trade-off between sensitivity and specificity depending on requirements
 – Large-scale genome studies often sacrifice sensitivity for specificity – they want fewer false positives, at the cost of more false negatives – to ensure (fewer) predictions of better quality
 – A researcher interested in a single gene or pathway who wants to know how miRNAs impact their systems will want to have a very high sensitivity (few false negatives) because they will want to identify (and test) as many real regulation points as possible
Pipeline to identify miRNA targets in *Drosophila* - miRanda

73 known *Drosophila* miRNAs

- Find complementary sequence matches in 3’ UTRs (Modified Smith-Waterman algorithm)
- Calculate free energy (stability) of miRNA/UTR binding (ΔG Kcal/mol)
- Estimate evolutionary conservation (Sequence conservation; relative positioning within the 3’ UTR)

Enright et al, Genome Biology, 2003
miRNAs are very small (21-22nt)
- Enormous number of potential targets with complementary sequence
- BLAST does not scale.

Low-complexity sequences
- Signal to noise problem

Standard sequence analysis packages generally not applicable
- Looking for complementarity, not similarity
 - i.e. A:U G:C not A:A G:G etc.
- Wobble pairing permitted
 - G:U and U:G base pairs

Small number of known cases to work with
Sequence matching algorithm

• Modified Smith-Waterman algorithm
 – Instead of looking for matching nucleotides, finds complementary nucleotides
 – Allows GU ‘wobble’ pairs (but downweights them)
 – Scoring system weighted so that complementarity to the first 11 bases of the miRNA is more greatly rewarded
 – Non-complementarity also more heavily penalized in that region
 – Known miRNAs bind 3’ UTRs at multiple sites
 • Additive scoring system for all target sites predicted in a UTR

• Calculate free energy of binding (Vienna RNA package)
Evolutionary conservation

• Used conservation as a way of keeping only the most likely miRNA target candidates

• Used *Drosophila pseudooscura* and *Anopheles gambiae* as closely related species:
 – Required >= 80% sequence similarity of target site with *D. pseudooscura*
 – Required >= 60% seq id with *A. gambiae*

• Also, require that the location of the target site in the 3’ UTR is equivalent

31 January 2012
Luce Skrabanek
Control sequences

• 100 sets of random 73 miRNAs generated
 – Conserved *D. melanogaster* miRNA nucleotide frequencies
• Analysis run independently for each set
• Results and counts averaged over all 100 sets
• Overall estimated false positive (FP) rate: 35%
 – Number of random hits / number of “real” hits
• If only targets that have ≥ 2 conserved sites in a UTR are counted, the FP rate drops to 9%
Validation

• Initial validation: application to experimentally verified targets
 – 9/10 known target genes for three miRNAs correctly identified
 – BUT biased in favor of this since the method (i.e., parameter ranges chosen) is based on the background knowledge derived from these known target sites

• For 73 *Drosophila* miRNAs, 535 predicted target genes (out of ~9,805/13,500 genes in the genome)
 – 231 have ≥ 1 predicted target interaction site
 – Many transcription factors and other genes involved in development

→ One-to-many and many-to-one relationships
Pipeline to identify mammalian targets: TargetScan

Find “seed matches” in the 3’ UTR of human/mouse/rat genes (match bases 2-8 of the miRNA exactly)

Extend the seed matches, optimizing base pairing (RNAfold)

Evaluate the folding free energy (RNAeval)

79 conserved mammalian miRNAs

Lewis et al, Cell, 2003
Controls

• Shuffled sequences - have fewer matches than the real miRNA
• Selected so as to preserve all relevant compositional features
 – Expected frequency of seed matches to the UTR dataset
 – Expected frequency of matching to the 3’ end of the miRNA
 – Observed count of seed matches in the UTR dataset
 – Predicted free energy of the RNA duplex
• Each shuffled control sequence also has the same length and base composition as the parent
• Signal:noise ratio = 3.2:1
 – 5.7 “real” targets vs. 1.8 targets found with control sequences
 – Approximately a 31% FP rate
Validation

• Luciferase reporter assays used to test 15 (out of >400) predicted targets
 – Experimental support for 11/15

• Mammalian miRNA targets have diverse functions
 (unlike plants, where miRNAs almost exclusively involved in developmental processes)
 – Enriched in developmental function, transcription
 – Also in nucleic acid binding and transcriptional regulator activity
Examine results

- Added in dog and chicken conservation
- Looked at flanking sequence of control and real matches in the UTRs

Lewis et al, Cell, 2005
Modify model - TargetScanS

- Targets identified by *conserved* complementarity to nucleotides 2-7 of the miRNA
- Require either a conserved adenosine at nucleotide 1 or a match at m8
 - t1A anchor may be important for binding by the RISC complex
- Often, a conserved t9A anchor at nucleotide 9, when there is an m8 match
- Don’t look past nucleotide 9 anymore
- Don’t calculate free energy anymore
- Potentially, thousands of mammalian targets
Many other programs…

- Many programs are claimed to be able to discover miRNA targets in mammals
 - miRanda Enright et al, SKI Whole sequence complementarity searching
 - TargetScan Lewis et al, MIT Seed complementarity
 - TargetScanS Lewis et al, MIT Seed complementarity
 - PicTar Rajewsky et al, NYU Thermodynamics
 - PITA Kertesz et al, Weizmann/RU Thermodynamics
 - RNA22 Rigoutsos et al, IBM Thermodynamics and multiple pattern occurrence
 - EIMMo Gaidatzis et al, UBasel Evolutionary conservation
 - DIANA-MicroT Hatzigeorgiou et al, Upenn Thermodynamics and evolutionary conservation

- Different algorithms / models give different results
- Different miRNA-mRNA target site duplexes may be better predicted by one algorithm than another
User frustration

- Anil Jeqqa, posting on the miRNA Nature forums, reports:
 - “I was looking at and comparing the miRNA target gene predictions from five commonly used algorithms, viz., miRanda, targetScanS, PicTar, microT and mirTarget. Surprisingly, there is so little overlap! And I also did a comparison with the entries in TarBase (that houses about 100 experimentally validated miRNA-gene pairs) and surprisingly almost all of the five prediction algorithms perform quite badly.” (from the miRNA forum on the Nature forums, 27 August, 2007)
Evaluation comparison

5 miRNAs vs. Selbach

All programs rely heavily on the evolutionary conservation of the seed target region, incorporate some of the following features:
- Detailed phylogenetic models
- HMM that combines scores for multiple target sites on the same UTR
- Accessibility of the binding site region
- Local concentration of miRNA sequences
- Thermodynamic stability

Luce Skrabanek

Alexiou et al, Bioinformatics, 2009

precision = total correctly predicted/total predicted
sensitivity = total correctly predicted/total real
A single accurate algorithm is better than a combination of predictions. Better specificity of a combination is achieved at a higher price in sensitivity.
SVM: Brief introduction

- Positive dataset
- Negative dataset
- Set of features that are likely to discriminate between the two
- Divide data into training set and test set
- Project training set into many dimensional space and find the hyperplane that best divides as many of the training set into the correct categories as possible
- Validate model (i.e., choice of plane) on test set
SVMs: Negative Datasets

• Machine learning approaches rely heavily on negative (as well as positive) datasets
 - Negative datasets usually created by generating random sequences
 • May inadvertently include real sites
 • May be so different from real sites that the difference between positive and negative sets is artificially great

• Bandyopadhyay and Mitra created a negative dataset from high-throughput data where you would expect many false positives (either secondary or non-specific effects)
 - Series of steps to filter out potential candidate pairs
 • The miRNA and its target could not both be highly expressed in the same tissue. If an miRNA is highly expressed in a tissue, then its target cannot be
 • The interaction energy between miRNA and target cannot be too strong
 • Target seed site cannot be too conserved
 - 289 negative examples, validated by looking at the Selbach pSILAC dataset
TargetMiner

• Used the 289 negative examples and 289 positive examples
• Extracted 90 features, including:
 – Features from seed-matching site
 – Frequency of single nucleotides in seed-matching site
 – Frequency of single nucleotides outside of seed-matching site
 – Frequency of di-nucleotides in seed-matching site
 – Frequency of di-nucleotides outside of seed matching site
 – miRNA-mRNA base interaction features in seed region
 – Pairs of consecutive miRNA-mRNA base interaction features in seed region
• From these, chose the 30 that were the most discriminatory
Comparison of TargetMiner with other target prediction algorithms
Further evaluation

• Trained other SVMs with their negative dataset – found that they improved the accuracy

• Trained their 90-feature SVM with a negative dataset made in the traditional way and decreased the accuracy
Future directions

• Advent of experimental data gives excellent benchmarking opportunities as well as providing new data to refine hypotheses
 – SILAC: measures the levels of many proteins concurrently
 • Baek et al Nature 2008
 • Selbach et al Nature 2008
 – HITS-CLIP: identification and sequencing of target sites for miRNAs
 • Chi et al Nature 2009
• Look for target sites outside the 3’UTR
• Combinatorial effect of miRNAs
 – Coordinated regulation by multiple miRNAs (which may also be co-transcribed in the same pri-miRNA)
• See review by Bartel (Cell 2009) for a discussion of other challenges
Important points

- This type of analysis follows the same basic procedure as a ‘normal’ wetlab scientific experiment
 - Background information
 - Hypothesis / model
 - Controls
 - Validation
 - Modify model and repeat
- Many of the techniques used here are well-known, some are modified
- Availability of complete genomes, scalable algorithms and computational resources crucial to this type of analysis

Knowledge of the biology informs the bioinformatics