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1 Introduction

1.1 What is Bioinformatics?

Bioinformatics is a newly coined term and refers to a novel branch of science
straddling the traditional domains of biology and informatics, which is itself
a new area of research. Hence, bioinformatics is primarily concerned with the
creation and application of information-based methodologies to the analysis
of biological data sets and the subsequent exploitation of the information
contained therein. The widespread adoption of a range of technologies such
as microarrays as well as large scale genome sequencing projects has resulted
in a situation where a large amount of data is being generated on a daily
basis - too large, in fact, for manual examination and subsequent exploita-
tion. Hence, the development of a range of suitable informatics tools for
automated feature extraction and analysis of these data sets is required.
The tools provided by bioinformatics are intended to fill this gap.
In addition, biological systems are intrinsically noisy. Fundamentally,

biological systems and the processes driving them are “fuzzy” in nature. As
a result, any data or observations derived thence will inevitably be equally
fuzzy. Due to this inherently noisy nature, the mathematical techniques used
to deal with biological datasets must be able to deal with the uncertainty
that is invariably present in the data. Statistical methods are the natural
solution to this problem.
Hence, it is clear that the effective use of bioinformatics necessitates a

sound mastery of the underlying mathematical and in particular statistical
principles. This short course has been designed to provide a suitable starting
point from which the bioinformatics course may be more effectively attacked.
The objective is to introduce all the relevant statistical concepts so that the
algorithms and methodologies used in bioinformatics can be more readily
understood and more effectively applied.

1.2 The story so far..

At the basic level, statistics is typically taught as a collection of quantities
which are calculated based on either the results of an experiment, or on
a sample of values taken from a population which is of interest to the re-
searcher. The most common examples are the mean, median and mod of
a sample. In one way or another, these three quantities approximate the
typical values expected of the data set, though the slight differences in the
way in which this is achieved means that different aspects of what is “typi-
cal” are emphasised. Other statistics may characterise the spread in values
of the elements of the dataset. The most commonly quoted example is the
standard deviation (and variance) of the dataset. This is the square root of
the mean squared deviation from the sample mean. Other less commonly
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Figure 1: Statistical learning process

used statistics describe higher order properties of the distribution and come
with such exotic names as the “skew” or the “kurtosis” of the distribution.
While these statistics provide a convenient means by which a dataset

may be easily characterised, their widespread use has obscured a lot of the
“meat” associated with the study of statistics. Proper use of statistical the-
ory requires that we approach the subject from a probabilistic perspective,
as only then can a more profound understanding and appreciation be gained
regarding the data and its underlying causes. Such a firm grounding is cer-
tainly essential for successful mastery and exploitation of the many tools
offered by bioinformatics.
Roughly, the process by which statistics is used to elucidate an unknown

system may be summarised by the graph in figure 1. In general, the system of
interest if invariably unknown (otherwise, it wouldn’t be very challenging!).
However, it is still possible to learn about the system by making indirect,
and inevitably noisy observations of its underlying state. The challenge then
is to generate a mathematical model which can effectively account for these
observations, and there are a number of algorithms by which this can be
achieved. Due to the uncertainty in the data, it is imperative that any such
model has the capability to deal with uncertainty - hence a probabilistic
model suggests itself. Note that the uncertainty in a system can originate
from two sources:

1. Uncertainty due to actual random processes affecting the data, such
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as mutations in DNA,

2. uncertainty due to incomplete information, where the model must be
able to account for our belief in the current state of the data

Once a suitable model has been devised, it is helpful to use hypothesis
tests to determine the validity of the model, i.e.: its faithfulness to the actual
data generator. This is a statistical process and only provides us with a
specified degree of confidence in the model - it can never confirm a model
with 100% certainty. Finally, and only if the validity of the model can be
ascertained with a reasonable degree of certainty, a range of activities can be
carried out including prediction, inference, filtering and so on, which allow
us to indirectly deduce the state of the system of interest, thus completing
the cycle.

1.3 Introduction to random variables and probability distri-

butions

Firstly, we need to make some informal definitions for key phrases which
will be used liberally throughout this course.

Random experiment - Experiments for which the outcome cannot be pre-
dicted with certainty.

Random variable - The outcome of a random experiment. Conventionally
written with uppercase symbols e.g.: X,Y,etc

Discrete random variable - A numerical quantity that randomly assumes a
value drawn from a finite set of possible outcomes. For example, the
outcome of a dice throw is a discrete random variable with a solution
space: {1,2,3,4,5,6}

Continuous random variable - Similar to the discrete case, but this time the
solution space consist of a range of possible values, with (in principle)
infinite resolution

Probability distribution - This is a function, PX(x) over the solution space
of the random variable, yielding the probability of occurence for each
potential outcome. Again this can be differentiated into discrete and
continuous instances. Probability distributions are constrained by the
following condition:

∫

x

PX(x)dx = 1 (1)

For a discrete random variable X, the probability distribution is of-
ten represented in the form of a table containing all possible values which
the variable can take, accompanied by the corresponding probabilities. In
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Figure 2: Probability distribution for coin toss experiment

the conventional view, these are interpreted as the relative frequencies of
occurence of the various values. In later sections, we will be covering an al-
ternative perspective known as the Bayesian framework, in which the prob-
abilities are treated as subjective measures of belief in certain outcomes of
the random experiment.
A good example is the result of a coin toss experiment, which is per-

formed by tossing a fair coin twice, and recording the number of heads
observed. Assuming this experiment is performed a large number of times,
we can expect that the results will occur approximately according to the
following frequencies:

Number of heads (X) Relative frequency

0 0.25

1 0.5

2 0.25

In later sections, we will examine how this can be calculated analytically.
Clearly, the most straightforward way in which the probability distribution
may be obtained is by repeating an experiment a large number of times,
then compiling and tabulating the results. These may then be presented
as a histogram depicting the probabilities of each of the outcomes. For our
experiment above, an idealised graph is shown in figure 2.

2 Probability distribution functions

A probability distribution function or PDF is simply a function defined
over the entire solution space (i.e.: the space of all possible values which the
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random variable is able to return) which allows the probability or probability
density at each potential solution to be determined analytically.
Many such functions have been proposed, corresponding to a variety

of theorised situations. However, in real life experimental conditions such
conditions are rarely achieved exactly, which means that the actual distribu-
tions from which real-life data is sampled often deviate from these idealised
distribution functions. Nevertheless, for practical reasons and mathemati-
cal tractability, it is the accepted practice to model real life distributions
by fitting one of the existing classes of distribution functions to match the
data.
We now study some of these functions.

2.1 One Bernoulli Trial

A Bernoulli trial is a single trial with two possible outcomes, often called
“success” and “failure”. The probability of success is denoted by p and
the probabilty of failure,q, is simply given by 1-p, since there are no other
possible outcomes of the experiment.
Hence, if we label a “success” as a 1 and a “failure” as a 0, we obtain

the following formula for the outcome of a bernoulli trial:

PX(x) = px(1− p)1−x, x = {0, 1} (2)

2.2 The Binomial distribution

A Binomial random variable is the number of successes obtained after re-
peating a given Bernoulli trial n number of times, where the probabilities p
and q are fixed for the duration of the experiment. There is also the added
condition that the outcome of the successive Bernoulli trials be independent
of one another.
For a Binomial random variable X, the probability distribution PX is

given by:
PX(x) =

n Crp
x(1− p)n−x, x = 1, 2, ..., n (3)

where nCr is the combination operator, which gives the number of ways in
which you can select r items from a collection of n. Note that the distribu-
tion is described by two parameters, n and p, which together determine the
characteristics of the resulting distribution function.
In the case where n = 20 and p = 0.5, the resulting binomial distribution

is shown in figure 3.

2.3 The Poisson distribution

One commonly encountered scenario is where the event of interest occurs
a finite number of times within a given time interval. Commonly quoted
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Figure 3: Binomial distribution with n = 20 and p = 0.5

examples are the number of car accidents during a fixed period, the number
of phone calls received, and so on. In such cases, while there is an infinites-
imally small probability of the event occurring at a particular time instant,
the actual number of time “instants” is extremely large (as the time dura-
tion is continuous, the number of instants is effectively infinite). Hence, it
is often sufficient just to know the mean number of occurrences in a fixed
time interval. The probability distribution for the number of occurrences
can then be well approximated by the Poisson distribution, given by the
following function:

f(x|λ) =
{

e−λλx

x!
for x = 0, 1, 2, ...

0 otherwise.
(4)

Where λ is the mean number of occurrences in the time period of interest,
and x is the actual number of occurrences. Clearly in this expression, eλ

serves as a normalising factor (since it does not depend on x), and the value
of the probability is determined by the expression λx

x!
.

2.4 The uniform distribution

Perhaps the most straightforward distribution function is the uniform dis-
tribution. A random variable is said to have a uniform distribution if the
density function is constant over a given range (and zero elsewhere), i.e.: all
possible values within the accepted range of values have equal probability.
For the range a ≥ x ≥ b, this is expressed as:

P (x) =

{

1

a−b
for a ≥ x ≥ b

0 otherwise.
(5)

7



−5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 4: Poisson distribution with λ = 5

2.5 The normal distribution

By far the most common, and certainly the most important probability
distribution that we will be studying is the normal or Gaussian distribution,
shown in figure 5. A continuous random variable X drawn from a normal
distribution has a density function:

PX(x) =
1√
2πσ

e
−

(x−µ)2

2σ2 (6)

The density function is parameterised by the quantities σ and µ which rep-
resent the standard deviation and mean of the distribution respectively.
For a number of reasons, both theoretical and practical, the gaussian is

the distribution of choice for many applications. However, two factors in
particular account for its pre-eminence:

1. The mathematical properties of the density function for the normal
distribution make it extremely easy to work with. The mean and
variance of the distribution are immediately evident from the function
- as a matter of fact, a gaussian is completely described by the mean
and variance. Higher order cumulants of the distribution are zero.

2. Many naturally occurring phemomena often have distributions that
are approximately normal. This is a direct consequence of the central
limit theorem which states that the composite distribution resulting
from the combination of a large number of independent random vari-
ables will converge to a normal distribution.

2.6 Characteristics of a random variable

The distribution of a random variable X contains all the information regard-
ing the stochastic properties of X. However, in many cases, it is difficult to
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Figure 5: Histograms for samples drawn from a zero mean, unit variance
normal distribution

represent this information as the PDFs of real random variables can often
be complex and not easily characterised by one of the existing families of an-
alytical distributions. In this section we study ways by which a distribution
may be “summarised” to give a general idea of its key properties without
having to describe the entire distribution.

2.6.1 Expectation

One of the most commonly invoked quantities is the expectation of a random
variable. Denoted by E[x], this is defined as:

EX [x] =

∫ ∞

x=−∞

x.PX(x)dx (7)

The number E[x] is also called the expected value of X or often simply the
mean of X. Note that it is analogous to the centre of gravity of a physical
object (as taught in earlier tutorials!). Effectively, the mean is the centre of
mass of the probability density function.
From this discussion it is evident that the mean should in fact be dis-

tinguished from the arithmetic average of a sample of points, also known as
the sample mean. For a sample size n, this is:

Xn =
1

n
(X1, X2, ..., Xn) (8)

The mean is related to the actual underlying distribution from which the
data is sampled, whereas the average is a statistical measure that is derived
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from the samples themselves. In fact, it can be proven that if a collection of
populations were drawn from a given distribution, the averages of the indi-
vidual populations would themselves be distributed according to a normal
distribution, with a mean and variance determined by the number of points
in the samples. In fact, the exact values for these parameters may be easily
determined thus:

E[Xn] = E[
1

n
(x1 + x2 + ...+ xn)]

=
1

n
.nE[Xi]

= µ (9)

The variance of the sample means can be predicted in a similar fashion thus:

V ar(Xn) =
1

n2
V ar

(

n
∑

i=1

xi

)

=
1

n2

n
∑

i=1

V ar(Xi) (x’s are independent of one another)

=
1

n2
.nσ2

=
σ2

n
(10)

What these these two results tell us is that, while the expected value of the
sample mean will be the mean of the underlying distribution, this is only
an estimate and varies with a given variance which is inversely proportional
to the sample size (i.e.: the larger the sample size, the more accurate the
estimate).

2.6.2 Moments of a distribution

The mean and variance are special cases of the moments of a probability
distribution.
For a random variable X, the rth moment Mr (where r is any positive

integer, is defined as:

Mr = EX [x
r]

=

∫ ∞

−∞

xrPX(x)dx (11)

It is also cannot be assumed that a certain moment of a given distribution
exists. If a distribution is bounded (i.e.: if the PDF integrates out to one),
then it is necessarily true that all moments exist. However, while it is
possible for all moments to exist even if the PDF is not bounded, this is not
necessarily true. It can be shown that if the rth moment of X exists, then
all moments of lower order must also exist.
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2.6.3 Moment generating functions

Given the density function, how can find the moments of a distribution? In
many cases, this can be obtained directly but often it can be quite challeng-
ing. One approach by which a given moment may sometimes be conveniently
calculated is via a moment generating function.

3 Distribution functions of more than one random

variable

It is possible to combine PDFs from separate random variables to form
composite distributions. In such cases, it is useful to be able to classify
these according to their respective functions. These help to clarify what a
distribution function says about a pair (or more) of random variable. In
particular, we identify three common classes into which composite PDFs
may fall.

3.1 Joint distributions

For this, and all proceeding examples in this section, we will concentrate
on the case where there are two random variables, X and Y , which are not
necessarily independent. All examples can easily be generalised to the case
of multiple random variables.
Consider the case where we sample simultaneously from X and Y , i.e.:

we conduct a joint experiment. What is the probability of observing a par-
ticular pair of outcomes? In this case, we can formulate the answer as a new
composite distribution function which extends over the combination of the
solution spaces of the two random variables.
To help visualise this, let us assume that X and Y are two discrete

random variables with the solution space defined by X,Y ∈ {1, 2, 3, 4, 5}.
In this case, the possible combinations of values which the joint random
variable (X,Y ) can assume are shown in figure 6. For each of the points in
the grid, we can now assign a probability of the corresponding outcome of
the joint experiment. These probability values are denoted by P (X,Y ), and
are given by the joint probability distribution of X and Y .

3.2 Conditional distributions

Suppose that we already know the outcome of experiment Y . Clearly this
would greatly limit the number of possible outcomes in the joint solution
space. In our current example, since we are only dealing with two variables,
this effectively reduces the solution space to one dimensional. It is clear
that, for any given value of Y , the corresponding probability for a particular
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Figure 6: Possible combinations of values for discrete random variables X
and Y

value of X can be obtained simply by reading along the particular row
corresponding to the incident value of Y .
We call this new distribution the conditional distribution of X given Y .

Equivalently, it is normal to speak of the probability of X conditional upon
a certain value of Y . Mathematically, this is written as P (X|Y ), and is
derived from:

P (X|Y ) = P (X,Y )

P (Y )
(12)

Note how it can easily be seen from figure 6 that this corresponds to the joint
distribution values for the required values of X (along the row corresponding
to the incident value of Y ), normalised by the sum of all the joint probability
values along the row.

3.3 Marginal distributions

In the final example, consider the situation where we are not interested in
the outcome for experiment Y , i.e.: we are only interested in the outcome
of X. For a given Xn = x, we can obtain the unconditional probability by
summing over P (X,Y ) for all the possible values of Y . This is a process
called marginalisation and is written as follows:

P (X) =
∑

Y

P (X,Y ) (13)

The resulting distribution, P (X), is then called the marginal distribution.
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3.4 Independent random variables

Before proceeding further, this is a suitable point for the introduction of the
concept of statistical independence when applied to random variables. In
many cases, “independence” as used in statistics corresponds well with the
general meaning of the word, as used in everyday situations. i.e., a given
random experiment is independent of another random experiment if the
associated random variables do not depend on each other in any way. For
example, the result of two successive coin-tosses occur completely randomly
and are independent of one another.
However, it is still useful for a formal definition be given. We say that

two random variables X and X are considered statistically independent if,
and only if, the joint distribution of the two variables is equal to the product
of the two marginal distributions, written as:

P (X,Y ) = P (X)P (Y ) (14)

In such a case, the grid in figure 6 becomes a multiplication matrix - where
the values associated with the vertices can be found from the product of the
unconditional probabilities P (X) and P (Y ).

4 Estimation theory

So far, we have covered some of the basic concepts of probability which pro-
vide the basis upon which the study of statistics is built. In particular, we
would like to consider real world data as observations of some underlying
generator. As was mentioned earlier in the notes, it is almost always impossi-
ble to study this underlying generator directly. However, what is commonly
possible is to learn about its properties based on indirect observations.
From the previous sections we have seen that one way in which we can

reason about this underlying probability distribution in a sensible way is if
we assume some parametric distribution for it. For example, if we want to
learn about the distribution of heights in the population of Malaysia, we
can assume that it is drawn from a gaussian distribution (and in fact, it
does, approximately!). The process by which we learn about the mean and
variance of this distribution is a crucial activity in statistics and is widely
referred to as estimation. As a loose guide, an estimator is some function or
algorithm by which the realisations of a random variable are mapped to an
estimate of the parameters of the underlying generator. Simply averaging
a dataset provides a good example of an estimator that is very commonly
used. It can be shown that the arithmetical average of a set of data provides
an unbiased estimate of the expectation of the underlying distribution from
which the data was drawn.
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4.1 Maximum likelihood estimation

Broadly speaking, there are two approaches to statistics which, while ac-
tually sharing a lot of common ground, are widely regarded as being from
opposing camps. One on hand, there is the “Frequentist” position, and on
the other we have the Bayesian framework.
One popular method taken from the frequentist camp, is that maximum

likelihood estimation. This is the procedure for estimating the parameters
of the unknown model, by maximising the likelihood of the observed data.
That is to say we would like to find:

θML = argmaxθ [P (Y |θ)] (15)

Here, θ represents the parameters of the model which we would like to
estimate, whereas Y denotes the available observations.

4.1.1 Example: linear regression

Suppose we have a set of paired values, x and y, which we assume are
linearly correlated. Accordingly, we assume that the two are related by the
expression y = Mx. Hence, we would like to estimate the value of the
parameter M , which in this case is the gradient of the line obtained by
plotting x vs y on an x− y plane. Finally, to obtain a maximum likelihood
solution, we also need to assume some kind of noise model. This is necessary
because real data is never exact - otherwise, we can obtain M simply by
evaluating:

M =
y1 − y2

x1 − x2

(which wouldn’t be very interesting!). A commonly used assumption is that
of gaussian noise. That is to say:

y =Mx+ ν (16)

where ν ∼ N(µ, σ). Hence, the distribution of y conditional upon x is given
by:

P (y|x) ∼ N(Mx, σ)

∝ exp

[

(

y −Mx

σ

)2
]

(17)

To simplify the maximisation of the likelihood, we now take the logarithm
of the expression above. Note that this is acceptable since logarithm is
a monotonic function - i.e.: it only increases in one direction, such that
log(x1) > log(x2) necessarily implies that x1 > x2. Taking the logarithm of
P (y|x) yields the log-likelihood term:

−logP (y|x) = −
(

y −Mx

σ

)2
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Note that we take the negative log likelihood - the reason for this will become
clear shortly. We can now easily differentiate this with respect to M , and
set to zero, to obtain:

d[−logP (y|x)]
dM

=
2

σ2
(y −Mx).x = 0

∴ xT y = xTxM

∴ M = (xTx)−1xT y (18)

Note the final left hand expression, (xTx)−1xT . This is called the pseudo-
inverse of x, and is commonly denoted as x†. The evaluation of the pseudo-
inverse of a matrix is a common function which is widely available in statis-
tics/mathematical packages - enabling maximum likelihood fitting of this
sort to be performed with great ease. Nevertheless, it is useful and con-
ceptually important to be aware of the underlying model - i.e.: that linear
regression is actually equivalent to fitting a linear gaussian noise observation
model to the data.

4.2 Bayesian framework

The maximum likelihood method discussed above has proved very useful
for many applications. However, it also has some shortcomings. In par-
ticular, by maximising over the parameter space, it is discarding all the
possible model parameters in favour of one “optimal” solution. While this
is a practical strategy in many instances it is also sensitive to the shape of
the likelihood function. Take, for example, the likelihood function depicted
in figure 7. This is an example of a bimodal distribution - in fact a mixture
of two gaussian distributions. However, one of the density functions has a
much smaller variance and as such is a lot more peaked. In fact however,
the probability mass of the first distribution is only half that of the flatter
distribution. This means that, while the maximum likelihood solution will
be the peak of the first distribution, it is far more likelihood that the “op-
timal” parameters will lie somewhere in the region defined by the second
distribution.
The Bayesian framework helps to overcome this problem by attempting

to consider the entire PDF of the solution space, rather than just the mode.
It is based on Bayes’ theorem, which is given by:

P (X|Y ) = P (Y |X)P (X)
P (Y )

(19)

What this provides, in very general terms, is a means by which the con-
ditional probability of a given model, X, given the available data, can be
linked to the conditional probability of observing the data if the model were
correct. In practice, the significance of this is that it gives a broad relation-
ship for estimating the parameters θ of a proposed model provided based on
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Figure 7: PDF consisting of a mixture of two gaussian distributions with
µ1 = 5 and µ2 = 15 and σ1 = 0.1 and σ2 = 1 respectively

observations derived from the true model. This is because it is much easier
to estimate P (Y |X) than the other way around.
In Bayesian terminology, the terms in equation 19 are often referred to

as follows:

1. In common with frequentist terminology, P (Y |X) is called the like-
lihood function. This is basically the probability of observing the
experimental data, given the proposed model,

2. P (X) is the prior distribution for the model. This terms allows any
prior information regarding the model parameters to be incorporated
into the inference. If no prior information is available, a suitable “ini-
tial guess” can be provided,

3. P (X|Y ) is the posterior distribution. This reflects the knowledge we
have regarding the model after having incorporated information con-
tained in the observations,

4. finally, the P (Y ) in the denominator on the right hand side is called
the evidence term. This is obtained by marginalising out X - and is
thus constant for all values of X. Hence, its main function is as a
normalising term.

The key concept in Bayesian analysis is that the distributions described
above are constantly updated, to reflect the increase in our knowledge about
the system being studied as new observations become available (it is also
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possible that very noisy observations will actually increase the degree of un-
certainty by “spreading” the distributions). However, in general, the process
of updating the distributions accompanies an increase in our knowledge of
the system.
The general process of Bayesian learning is as follows:

1. Start by making an initial guess on the state of the system. This is
the prior distribution P (X),

2. when we receive (or make) an observation, Y , we can calculate the
likelihood P (Y |X) using the model X that we have assumed,

3. the combination of prior and likelihood can then be used to calcu-
late the updated distribution for X, i.e.: the posterior distribution
P (X|Y ),

4. the whole process can be repeated whenever a new observation (or set
of observations) is obtained. However, at each step, the posterior of
the previous step is used as the new prior distribution.

In this way, the Bayesian methodology also carries certain philosophical
implications as well. In particular, it describes a systematic framework in
which we may explicitly specify our belief in the parameters of a model, and
a procedure through which this belief may be updated by comparison with
observed data.

5 Markovian dynamics

Hitherto, we have looked at probability distributions that do not change in
time. The models that have been examined in the preceeding sections specify
a static density function over the solution space, and it is assumed that
observations may be made indefinitely without changing the probabilistic
structure of the data.
In this section we introduce a modelling paradigm which allows for

changes in the statistical properties of the data over time. Such dynamic
models allow a much more general range of phenomena to be modelled.

5.1 Dynamical processes

A dynamical process is basically one which changes over time. Essentially,
these processes are regarded as being composed of an underlying “state”
which evolves in time according to some dynamic evolution rule, often con-
taining stochastic components. This is illustrated in figure 8, where xt rep-
resents the state of the system at time t, and yt the observation (also at
time t).
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Figure 8: Block diagram depicting the evolution of a generic dynamical
process through time

5.2 Markov processes

The key elements in this model are the two functions f(.) and g(.). The
function f(.) is known as the transition or evolution function and determines
how the system changes over time. In general we would like to model cases
where the following two relationships hold true:

xt = f(xt−1) , and (20)

yt = g(yt) (21)

Equation 20 is of particular significance as it indicates that the state of the
system at time t is dependent only on the state of the system at time t− 1.
This is known as the Markov property and any system in which this applies
is a Markov process. Equation 21 defines the relationship between the state
of the system and the observations generated from it. Again, note that the
observations at time t only depend on the state of the system at time t.
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