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Abstract.DNA microarrays, or gene chips, allow surveys of
gene expression, (i.e., mRNA expression) in a highly parallel
and comprehensive manner. The pattern of gene expression
produced, known as the expression profile, depicts the subset
of gene transcripts expressed in a cell or tissue. At its most
fundamental level, the expression profile can address qualita-
tively which genes are expressed in disease states. However,
with the aid of bioinformatics tools such as cluster analysis,
self-organizing maps, and principle component analysis, more

sophisticated questions can be answered. Microarrays can be
used to characterize the functions of novel genes, identify
genes in a biologic pathway, analyze genetic variation, and
identify therapeutic drug targets. Moreover, the expression
profile can be used as a tissue or disease “fingerprint.” This
review details the fabrication of arrays, data management tools,
and applications of microarrays to the field of renal research
and the future of clinical practice.

Recent advances in functional genomics have made possible
new approaches to the diagnosis and management of a wide
array of renal disorders. With new tools to explore gene ex-
pression and regulation, researchers can understand better the
molecular basis of disease. Of the estimated 30,000 human
genes, only 30% are functionally understood. Moreover, fewer
than 3% of identified genes have been characterized in renal
disease, underscoring the need for functional genomics tech-
niques in renal research. Although recent research has uncov-
ered the genetic basis of hereditary disorders, including famil-
ial focal segmental glomerulosclerosis and adult polycystic
kidney disease, using traditional genetic mapping techniques,
more comprehensive approaches are needed to identify the
complex sequence of perturbations that underlie polygenic
conditions such as hypertension and chronic renal insufficiency
(1–3). Among the most powerful of these new tools are DNA
microarrays, capable of genome-wide profiles of mRNA
expression.

A DNA microarray, or gene chip, is a matrix of thousands of
cDNA or oligonucleotides imprinted on a solid support (4,5).
Labeled mRNA from the tissue of interest is hybridized to its
sequence complement on the array to provide a measure of
mRNA abundance in the sample. The hallmark of the microar-
ray experiment is the expression profile, the pattern of gene
expression produced by the experimental sample (Figure 1).
Arrays composed of DNA fragments are not new (6,7). How-

ever, early arrays included only a small set of genes thought to
be involved in the process being studied. Significant improve-
ments in substrate materials, robotics, and signal detection
have made possible miniaturization of arrays with the result
that hundreds of thousands of oligonucleotides can be arrayed
on a square-centimeter chip. This important feature makes it
possible to study gene expression without specifying in ad-
vance which genes are to be studied. Thus, DNA microarrays
permit systematic and comprehensive surveys of gene expres-
sion in an efficient manner.

Principles of Microarray Technology
Microarray Structure

Two variations of microarrays exist: (1) customized cDNA
microarrays composed of cDNA or oligonucleotides and (2)
commercially produced high-density arrays,e.g., Affymetrix
GeneChip (Affymetrix, Santa Clara, CA), containing synthe-
sized oligonucleotides (8). The first type of array can analyze
RNA from two different samples on a single chip but requires
a source of genes to be spotted onto the chip, usually expressed
sequence tag clones or oligonucleotides. High-density com-
mercial arrays provide expression analysis over a larger num-
ber of genes (12,000 human genes in the case of the Affymetrix
GeneChip) but can analyze only a single sample on one chip
and at considerable cost, making them unsuitable for large-
scale experiments in most academic laboratories. Both types of
arrays produce sensitive and accurate expression data.

Creating a cDNA Microarray
Customized cDNA microarrays are fabricated by first se-

lecting the genes to be printed on the array from public data-
bases/repositories or institutional sources. High throughput
DNA preparation, usually done by robotics systems, consists of
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tens of thousands of PCR reactions. Purified PCR products
representing specific genes are spotted onto a matrix. Spotting
is carried out by a robot, which deposits a nanoliter of PCR
product onto the matrix in serial order. Nylon filter arrays
largely have been replaced by glass-based arrays, typically
microscope slides, which have the advantage of two-color
fluorescence labeling with low inherent background fluores-
cence. DNA adherence to the slide is enhanced by treatment
with polylysine or other cross-linking chemical coating. Spot-
ted DNA is cross linked to the matrix by ultraviolet irradiation
and denatured by exposure to either heat or alkali. The Af-
fymetrix GeneChip is produced by a novel photolithographic
method in which thousands of different oligonucleotide probes
are synthesizedin situ on the array (8).

Data Management
Once the hybridized chip is scanned, data flow through the

following steps. Data are collected and saved as both an image
and a text file. Of critical importance is that precise databases
and tracking files be maintained regarding the spot configura-
tion of all chips. These contain information on the location and
names of genes arrayed on each chip. The saved files are
imported to software programs that perform image analysis and
statistical analysis functions. Finally, the data are mined for
induced or repressed genes, patterns of gene expression, and

temporal relationships of expression under different experi-
mental conditions. A significant challenge exists in making
sense of the vast quantity of data generated by microarray
experiments. There is no single tool that meets all of the needs
of the microarray researcher. Collections of software programs
are used to perform a multitude of tasks, including data track-
ing, image analysis, database storage, data queries, statistical
analysis, multidimensional visualization, and interaction with
public databases on the Internet. Basic spreadsheet programs
can be adapted to answer questions regarding magnitude of
change in gene expression. However, limitations often arise as
a result of inadequate memory capacity for managing the
enormous data sets. More sophisticated analytical tools, includ-
ing cluster analysis, self-organizing maps, and principle com-
ponent analysis, have been applied to biologic data to extract
higher-order relationships embedded in expression patterns.
The concepts that underlie these analytical methods are illus-
trated below.

Applications of Microarrays
Gene Expression and Discovery

One of the most important and fundamental questions an-
swered by the expression profile is, “Which genes are ex-
pressed and to what magnitude?” The expression profile rep-
resents the subset of gene transcripts or mRNA expressed in a

Figure 1.Performing a microarray experiment. To perform a microarray experiment, RNA from the experimental sample(s) is first isolated and
purified. The purified RNA is then reverse-transcribed in the presence of labeled nucleotides. In the case of custom-made arrays, the
fluorophores Cy3 and Cy5 typically are used. The two-color hybridization strategy permits simultaneous analysis of two samples on a single
array (shown here). For high-density commercial arrays, nonfluorescent biotin labeled by staining with a fluorescent streptavidin conjugate
typically is used. The labeled probe is fragmented and hybridized to the array, and then the array is washed and stained. Signal intensity,
proportional to the amount of bound probe, is measured by scanning with a confocal laser. Background signal is subtracted from the average
signal intensity for each spot on the array to generate a quantitative image. Because the sequence of each cDNA or oligonucleotide on the grid
is known, the relative abundance of each transcript can be determined. Data are normalized across experiments by calculating the variance of
all genes in the sample or of a known subset of unchanging,e.g., maintenance, genes.
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cell or tissue. The underlying assumption is that the relative
abundance of mRNA transcripts represents the cellular re-
sponse to a particular state. DNA microarrays have been used
to study gene expression in a variety of organisms, including
yeast, plants, and humans (9–11). Microarray experiments
produce profiles of gene expression that reflect the transcrip-
tional response of thousands of genes to a change in cellular
state or in response to a pharmacologic stimulus. The typical
goal of such experiments is the identification of new genes
involved in a pathway, or diagnostic and/or prognostic expres-
sion markers that characterize a disease state. Such an ap-
proach permits a genome-wide survey in asingleassay, with-
out the need to identify potentially important genesa priori. In
this sense, microarray experiments can be considered hypoth-
esis generating rather than hypothesis driven. The expression
profiles generated from microarray experiments can be used as
a launching point to identify candidate genes for further study
using traditional techniques such as Northern or Western blot-
ting, reverse transcription-PCR, and gene transfection. As a
general rule, 25 to 30% of genes present in the human genome
are expressed in a given tissue, and expression of 10% of these
genes is changed in response to a given stimulus. Two types of
data can be generated from microarray experiments: static or
dynamic.Static datarefers to data that compare one sample
with a second, independent sample,e.g., disease tissueversus
normal tissue.Dynamic datarefers to data that are obtained
temporally from a sample,e.g., disease progression over time.
The distinction is important because the experimental design
and statistical methods differ for each type of experiment.

Several investigators demonstrated the utility of a global
approach to expression profiling. Genes that are expressed
preferentially in inflammatory disease states, such as inflam-
matory bowel disease and rheumatoid arthritis, have been
identified using microarrays (12). In addition to identifying
known genes, the use of microarrays allowed investigators to
identify several novel genes that are expressed in these inflam-
matory conditions. Moreover, investigators often find that
genes that are known to be important in another, unrelated
context are unexpectedly involved in the process being studied.
Expression profiles have also been used to identify genes that
are important in tumorigenesis and to identify novel genes in
multiple sclerosis, Alzheimer’s disease, and viral hepatitis
(13–18).

Predicting Gene Function
In addition to providing a broad survey of gene expression,

transcriptional profiling can reveal patterns of gene expression,
which can be used to predict gene function. This is accom-
plished by grouping genes into sets, or clusters, with similar
expression profiles produced over multiple experiments. This
grouping can be performed either by visual inspection of the
data or by using statistical methods. It is expected that genes
that display similar expression patterns are functionally related
such that genes in a pathway,e.g., glycolysis, should be co-
regulated under all experimental conditions. In a landmark
study, DeRisiet al. (9) used differential gene expression to
examine the temporal response of yeast undergoing the shift

from anaerobic to aerobic metabolism, known as the diauxic
shift. With the aid of clustering algorithms, distinct temporal
patterns of gene expression were identified and genes were
grouped on the basis of the similarity of their expression
profiles. For example, cytochrome c-related genes, TCA/
glyoxylate cycle-related genes, and genes involved in carbo-
hydrate storage were coordinately induced during the diauxic
shift. Importantly, temporal analysis revealed expression pat-
terns in which families of genes with similar functions were
discovered to be co-regulated. Thus, expression profiling using
DNA microarrays can reveal co-regulated and therefore puta-
tive co-functional families of genes.

Expanding on these results, Hugheset al. (19) created a
reference database, or compendium, of expression profiles in
yeast cells corresponding to diverse genetic mutations and drug
treatments. They showed that different mutants or treatments
that affect similar cellular processes displayed similar expres-
sion profiles. Furthermore, they were able to identify cellular
functions of unknown genes by comparing the expression
profile of the corresponding deletion mutant with profiles of
known mutants in the database that produced similar profiles.
The strength of the compendium approach to functional dis-
covery is that it relies solely on pattern recognition in the
database of profiles. Knowledge of other genes in a pathway,
regulatory elements, or even the complete sequence of the gene
of interest need not be known to use this approach.

An example of cluster analysis generated from temporal
gene expression data is shown in Figure 2. In this hypothetical
experiment, gene expression in response to the experimental
stimulus is measured at five time points. The data are plotted as
expression levelversus time (in this case, the log ratio of
experimental to control expression level). In a cluster analysis,
the expressed genes are grouped into clusters with similar
expression patterns. Each line represents the average behavior
of a discrete gene cluster containing 5 to 500 genes. The
aggregate of gene clusters can be viewed together, as in panel
A, or individually, as in panel B. In panel C, two of the
individual clusters are magnified: clusters 1 and 8. In both
graphs, the individual genes that compose each cluster are
shown as a different line. In cluster 1, the genes show no
change in expression level in response to the experimental
stimulus. Such a profile might be expected for a cluster of
housekeeping or maintenance genes. In cluster 8, the genes
display an early wave of increased expression followed by a
rapid decline. Such a profile might be expected for genes that
are associated with transcription and translation regulation.
Hence, cluster analysis is a powerful tool for identifying co-
functional gene families.

Linking Cell Pathways
Beyond studying the expression levels of individual genes

under various conditions, the patterns produced by mRNA
expression profiling can be exploited to study links among
various cell pathways, the sequence of signaling within a
pathway, and common regulatory mechanisms. In their study
of differential gene expression in yeast cells, DeRisiet al. (9)
identified transcription regulatory sequences as well. Because
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the sequence of the entire yeast genome is known, they were
able to examine the gene promoter region sequence of many of
the genes within a co-regulated cluster and discovered that
many shared common regulatory sequences. For example,
seven of the genes that displayed a late induction profile during
the diauxic shift were shown to possess a common upstream
activating sequence, the carbon source response element. Sim-
ilar observations were made in other gene clusters. Using more
sophisticated informatics, Rothet al. (20) were able to identify
distinct promoter regulatory motifs that are responsible for
coordinated gene expression in yeast. Given these striking
findings, some investigators have suggested that a compen-
dium of expression behavior could be used to predict regula-
tory elements and thus obviate the need for conventional meth-
ods of studying genetic regulatory sequences using site-
directed mutagenesis (21). Thus, by assembling profiles of
deletion (or overexpression) mutants that are exposed to vari-
ous physiologic stimuli, reasonable maps of genetic circuitry
can be deduced.

The task of unraveling cell networks in eukaryotic cells is

considerably more difficult because of the enormity of the
human genome, the complexity of intron/exon splicing, and the
vast number of cell perturbations possible. Nonetheless, tem-
poral analysis of gene expression profiles is a valuable tool,
which can suggest the framework of cell pathways. Temporal
patterns can reveal information on the coordinated regulation
of genes involved in cell cycle, signal transduction, metabo-
lism, transcription, and other cellular processes. The coordi-
nated regulation of genes acting at different steps in a common
cell process allows researchers to dissect complex cell path-
ways by examining temporal expression profiles. Iyeret al.
(11) studied the temporal response of fibroblasts exposed to
serum using this approach. They found that genes that are
involved in programs of cell cycle and proliferation, inflam-
mation, angiogenesis, tissue remodeling, and cytoskeletal re-
organization each displayed distinct expression patterns.

Detection of Mutations and Polymorphisms
Variation in the human genetic code,i.e., DNA sequence,

has been studied using gene chips. Approximately 0.1%, or

Figure 2.Cluster analysis depicting co-regulated clusters of genes. The typical output of a cluster analysis of temporal gene expression data.
Time is plotted on the x-axis, and the log of gene expression level is plotted on the y-axis. (A) All expressed genes are assigned a cluster, and
the clusters are visualized on a single graph, with each line representing a different gene cluster. (B) The 12 clusters are seen individually. (C)
Two of the individual clusters are magnified. Cluster 1 represents a group of genes whose expression is not changed in response to the
experimental stimulus,e.g., cell maintenance genes. In contrast, the group of genes that compose cluster 8 is induced early and then rapidly
declines in response to the stimulus,e.g., transcription factors.
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3,000,000, of nucleotides of the human genome is variant
within the human population. Detecting these variations is
critical to associating them with disease onset or therapeutic
outcome. Recent studies illustrating the use of gene chips for
this purpose include screening for mutations that lead to drug
resistance in the HIV-1 genome, detection of heterozygous
mutations in the BRCA1 breast and ovarian cancer gene,
identification of mutations in theb-globin gene inb-thalasse-
mia patients, and detection of polymorphisms in the human
mitochondrial genome (22–25). By analyzing population-
based genetic polymorphisms, clinicians could tailor therapeu-
tic choices to individual patients. For example, hypertensive

therapy or an immunosuppressive regimen could be tailored to
a patient’s genotype profile. Ideally, then, therapeutic decisions
would be made on the basis of the underlying pathophysiology
in an individual patient, thereby limiting drug toxicities.

Expression Profile as a “Fingerprint” of Cellular or
Disease Phenotype

The expression profile produced by microarray experiments
represents the transcriptional response of a cell to a particular
stimulus. As demonstrated by early microarray experiments,
the response elicited is tightly regulated and highly distinct.
Indeed, the pattern of gene expression could be considered the
“fingerprint” of a cell or tissue in response to a specific
stimulus. Such a molecular fingerprint could serve as a tool to
infer the metabolic state of a cell, as a classification method for
disease, or as a reference to compare the similarity betweenin
vitro andin vivoexperimental conditions. For example, tumors
can be classified by their expression profile (26). Thus, a
disease signature can be detected using microarrays. Our lab-
oratory is in the process of compiling an index database of
expression profiles of normal human tissues, which may serve
as a fingerprint of tissue phenotype. These data are publicly
available at www.hugeindex.org. Though not yet complete, the
database has already yielded important observations, including
identification of a set of genes with similar expression levels in
all human tissues, so-called maintenance genes, and differen-
tial gene expression within different regions of the kidney.

Phenotypes of disease or cellular states can be classified
using principal component analysis (PCA) (27). PCA is an
analytic method that identifies a subset of genes that are
responsible for the majority of observed transcriptional differ-
ences and the distinct pattern underlying the differences. This
technique aids visualization of multidimensional data by pro-
jecting it into a lower dimensional space. In other words, PCA
structures a data set using as few variables as possible. Figure
3 shows atheoreticalclassification of pulmonary-renal syn-
dromes using PCA. In this example, disease phenotypes are the
variables and gene expression levels are the observations. First,
the genes that compose the highest transcriptional variability
between phenotypes are identified. The first principal compo-

Figure 3. Theoretical classification of pulmonary-renal syndromes
using principal component analysis. Each principal component repre-
sents a unique set of genes among the entire set of thousands of genes
surveyed on a gene chip. The sum of expression levels of the genes
that compose this set, or principal component, is represented on each
axis. Each point represents an individual patient. First, by plotting the
first principal component on the x-axisversusthe second principal
component on the y-axis, the disease phenotypes of Churg-Strauss and
microscopic polyangiitis group together and are distinct from one
another. Repeating the process using additional principal components
and multiple dimensions allows disease phenotypes to be separated
and disease fingerprints to be visualized.

Figure 4.Paradigm of microarray applications in renal disease.
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nent is the combination of gene expression that has the greatest
variance among phenotypes. Each subsequent principal com-
ponent is the combination of gene expression that has the
greatest varianceand is independent of defined components.
Three principal components are used to define the observed
phenotypes in this example. With the use of this method,
transcriptional fingerprints that underlie phenotypic variation
can be visualized easily. In addition, evaluation of the compo-
nents can suggest the underlying factors that are responsible for
phenotypic variation.

Drug Discovery and Drug Target Validation
The introduction of DNA microarrays to the field of phar-

macology has created new opportunities for drug discovery.
Traditionally, drug discovery was accomplished by first iden-
tifying a target molecule within a biologic pathway and then
developing an inhibitory compound against the intended target.
With the aid of microarray technology, large-scale systematic
approaches to drug discovery are possible. Comparing expres-
sion of thousands of genes between normal and diseased states
can identify multiple potential drug targets without first know-
ing the biochemical pathway involved. Drug target validation
can be accomplished using gene chips. The expression profile
of drug-treated cells is screened against a database of deletion
mutants to identify the profile that matches that of the drug-
treated cells (19,28). Gene chips have important applications in
toxicology as well. Secondary drug targets and potential un-
desirable side effects can be predicted using microarrays. Sev-
eral excellent reviews have detailed in greater depth the use of
microarrays in drug discovery and toxicology (28–31).

Future Directions
Technical improvements in microarray technology continue

to take place. Current areas of development include improving
RNA amplification methods to allow analysis of smaller
amounts of RNA and, eventually, single-cell expression anal-
ysis (8,32). At present, large amounts of RNA routinely are
needed (10mg of total RNA or 500 ng of mRNA). Novel signal
detection methods are being developed to permit more sensi-
tive analyses (33). A critical need exists in the area of analyt-
ical tools for data mining. The use of such tools applied to
complex biologic systems is still in its infancy, and many
uncertainties still exist. There are no universal standards by
which to analyze and compare microarray data, and analytical
techniques are still untested. Furthermore, the vast data sets
generated have strained most available computer resources.
These issues must be addressed before microarray technology
can achieve its full potential.

With improved accessibility to this technology and growing
understanding of its full capabilities, microarrays will move
from the research bench into the clinical arena. In the paradigm
illustrated in Figure 4, comparison of a patient’s expression
profile to compendiums of disease profiles and drug response
profiles will aid clinicians in diagnosing disease, identifying
prognostic markers, and individualizing therapy. Thus, mi-
croarray technology complemented by bioinformatics repre-

sents an exciting new tool for biologic discovery in renal
research.
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